Solvability of infinite system of $q$-difference equations in $c_0$ space
Resumo
We investigate the existence of solutions of an infinite system of fractional $q$-difference equations with integral conditions in $c_0$ space which involves a $q$-derivative of the Caputo type. The result is obtained by using a generalization of Darbo's fixed point theorem and measure of noncompactness (MNC in short). This method has demonstrated significant potential in the analysis of these types of problem. It also introduces essential elements of fractional $q$-calculus. Finally, an example is presented to validate the proposed findings.
Downloads
Referências
Abbas, S., Benchohra, M., Laledj, N., Zhou, Y., Existence and Ulam stability for implicit fractional q-difference equations, Adv. Differ. Equ. 2019, 480, (2019).
Agarwal, R. P., Certain fractional q-integrals and q-derivatives, Math. Proc. Camb. Philos. Soc., 66(2), 365–370, (1969).
Ahmad, B., Ntouyas, S. K., Purnaras, I. K., Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equ. 2012, 1–15, (2012).
Allouch, N., Graef, J. R., Hamani, S., Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces, Fract. Fract., 6(5), 237, (2022).
Al-Salam, W. A., Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 15(2), 135–140, (1966).
Banas, J., On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carolin., 21(1), 131–143, (1980).
Benchohra, M., Cabada, A., Seba, D., An existence result for nonlinear fractional differential equations on Banach spaces, Bound. Value Probl. 2009, 1–11, (2009).
Cheung, P., Kac, V. G., Quantum calculus, Springer, Heidelberg, (2001).
Darbo, G., Punti uniti in transformazioni a condominio non compatto, Rend. Semin. Mat. Univ. Padova, 24, 84–92, (1955).
Gasper, G., Rahman, M., Basic hypergeometric series, Cambridge Univ. Press, Cambridge, (2004).
Jackson, F., On q-definite integrals, Quart. J. Pure Appl. Math., 41, 193–203, (1910).
Jackson, F. H., On q-functions and a certain difference operator, Trans. R. Soc. Edinb. Earth Environ. Sci., 46(2), 253–281, (1909).
Kilbas, A. A., Marichev, O. I., Samko, S. G., Fractional integrals and derivatives: theory and applications, Gordon and Breach, Amsterdam, (1993).
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, (2006).
Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, Amsterdam, (1998).
Rajkovic, P. M., Marinkovic, S. D., Stankovic, M. S., Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1, 311–323, (2007).
Rajkovic, P.M., Marinkovic, S. D., Stankovic, M.S., On q-analogues of Caputo derivative and Mittag–Leffler function, Fract. Calc. Appl. Anal. 10(4), 359–373, (2007).
Salahshour, S., Ahmadian, A., Chan, C. S., Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 153–158, (2015).
Samadi, A., Applications of measure of noncompactness to coupled fixed points and systems of integral equations, Miskolc Math. Notes, 19(1), 537–553, (2018).
Zhou, W. X., Liu, H. Z., Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Differ. Equ. 2013, 1–12, (2013).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



