On some properties of Fibonacci almost i-statistical convergence of fuzzy variables in credibility space
Résumé
This paper explores several concepts of ideal and almost convergence for sequences of fuzzy variables within the context of credibility theory. Focusing on Fibonacci almost I-statistical convergence, the study examines it from various perspectives, including almost surely, credibility, mean, distribution, and uniformly almost surely. The paper also investigates the interrelationships between these convergence notions. Additionally, different types of Fibonacci almost I-statistical Cauchy sequences are analyzed in the framework of credibility theory, leading to significant findings.
Téléchargements
Références
Baarir, M., Baar, F., Kara, E.E., On the spaces of Fibonacci difference null and convergent sequences, arXiv preprint arXiv:1309.0150 (2013).
Chen, X., Ning, Y., Wang, X., Convergence of complex uncertain sequences, J. Intell. Fuzzy Systems, 30(6), 3357-3366, (2016).
Das, M., Tripathy, B.C., Application of credibility theory in the study of almost ideal convergent sequence of fuzzy variables, Natl. Acad. Sci. Lett. https://doi.org/10.1007/s40009-024-01582-2
Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244, (1951).
Gürdal, M., ahiner, A., Açık, I., Approximation theory in 2-Banach spaces, Nonlinear Anal., 71(5–6), 1654-1661, (2009).
Gürdal, M., Yamancı, U., Statistical convergence of operator theory, Dynam. Syst. Appl., 24(3), 305-311, (2015).
Kadak, U., Mohiuddine, S.A., Generalized statistically almost convergence based on the difference operator which includes the (p, q)-gamma function and related approximation theorems, Results Math., 73, 9 (2018). https://doi.org/10.1007/s00025-018-0789-6
Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76(3), 167-181, (2003).
Kara, E.E., Basarir, M., An application of Fibonacci numbers into infinite Toeplitz matrices, Caspian J. Math. Sci., 1(1), 43-47, (2012).
Kaufmann, A., Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, (1975).
Kii, Ö., Gürdal, M., Sava, E., On almost convergent sequence of fuzzy variables, TWMS. J App And Eng Math., 14(2), 657–671, (2024).
Koshy, T., Fibonacci and Lucas numbers with applications, Wiley, (2001).
Kostyrko, P., Šalát, T., Wilczyński, W., I-convergence, Real Anal. Exchange 26(2) (2000/01), 669-685.
Li, X., Liu, B., A sufficient and necessary condition for credibility measures, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 14, 527-535, (2006).
Liu, B., Inequalities and convergence concepts of fuzzy and rough variables, Fuzzy Optim. Decis. Mak., 2(2), 87-100, (2003).
Liu, B., Liu, Y.K., Expected value of fuzzy variable and fuzzy expected value models, IEEE. Trans Fuz. Syst., 10(4), 445–450, (2002).
Liu, B., Liu, Y.K., Expected value of fuzzy variable and fuzzy expected value models, IEEE Trans. Fuzzy Syst., 10(4), 445-450, (2002).
Liu, B., A survey of credibility theory, Fuzzy Optim. Decis. Mak. 5(4), 387-408, (2006).
Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math., 80, 167-190, (1948).
Mohiuddine, S.A., An application of almost convergence in approximation theorems, Appl. Math. Letters, 24(11), 1856-1860, (2011).
Nabiev, A.A., Sava, E., Gürdal, M., I-localized sequences in metric spaces, Facta Univ. Ser. Math. Inform. Facta Universitatis, 35(2), 459-469, (2020).
Saha, S., Tripathy, B.C., Roy, S., On almost convergent of complex uncertain sequences, New Math. Nat. Comput., 16(3), 573-580, (2020).
Saha, S., Tripathy, B.C., Statistical Fibonacci convergence of complex uncertain variables, Afr. Mat. 34, 76, (2023).
Sava, E., Das, P., A generalized statistical convergence via ideals, App. Math. Letters, 24(6), 826-830, (2011).
Sava, E., Gürdal, M., I-statistical convergence in probabilistic normed spaces, UPB Sci. Bull. Ser. A Appl. Math. Phys., 77(4), 195-204, (2015).
Sava, E., Kii, Ö., Gürdal, M., On statistical convergence in credibility space, Numer. Func. Anal. Opt., 43(8), 987-1008, (2022).
ahiner, A., Gürdal, M., Yiğit, T., Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. Appl., 61(3), 683-689, (2011).
Vajda, S., Fibonacci and Lucas Numbers, and Golden Section: Theory and Applications, Ellis Horword, Chichester, (1989).
Wang, G., Liu, B., New theorems for fuzzy sequence convergence, Proceedings of the Second International Conference on Information and Management Science, Chengdu, China, 100-105, (2003).
Yamancı, U., Gürdal, M., On lacunary ideal convergence in random n-normed space, J. Math., 2013, 868457, 1-8, (2013).
Yamancı, U., Gürdal, M., I-Statistical convergence in 2-normed space, Arab J. Math. Sci., 20(1), 41-47, (2014).
You, C., Zhang, R., Su, K., On the convergence of fuzzy variables, J. Intell. Fuzzy Syst., 36(2), 1663-1670, (2019).
Zadeh, L.A., Fuzzy set, Inf. Control., 8(3), 338-353, (1965).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



