Chain conditions in modular lattices with applications to Grothendieck categories and torsion theories
Resumo
The text presents in a compact way some basics
of Lattice Theory with a great emphasis on chain conditions in modular
lattices, that are then applied to Grothendieck categories and
module categories equipped with hereditary torsion theories to obtain
immediately and in a unified manner significant results in these areas.
We also include other results of Algebraic Theory of Lattices that are
interesting in their own right.
Downloads
Referências
T. Albu, Sur la dimension de Gabriel des modules, Algebra-Berichte, Bericht Nr. 21, 1974, Seminar F. Kasch, B. Pareigis, Mathematisches Institut der Universität München, Verlag Uni-Druck München, 26 pages.
T. Albu, On commutative Grothendieck categories having a Noetherian cogenerator, Arch. Math. (Basel) 34 (1980), 210–219.
T. Albu, Certain Artinian lattices are Noetherian. Applications to the Relative Hopkins-Levitzki Theorem, in “Methods in Ring Theory”, edited by F. Van Oystaeyen, D. Reidel Publishing, Dordrecht, 1984, pp. 37–52.
T. Albu, Gabriel dimension of partially ordered sets (I), Bull. Math. Soc. Sci. Math. R. S. Roumanie 28 (76) (1984), 99–108.
T. Albu, Gabriel dimension of partially ordered sets (II), Bull. Math. Soc. Sci. Math. R. S. Roumanie 28 (76) (1984), 199–205.
T. Albu, F-Semicocritical modules, F-primitive ideals and prime ideals, Rev. Roumaine Math. Pures Appl. 31 (1986), 449–459.
T. Albu, Classes of lattices (co)generated by a lattice and their global (dual) Krull dimension, Discrete Math. 185 (1998), 1–18.
T. Albu, Lessons on the Grothendieck Category σ[M], Editura Universității București, 2004, 122 pages.
T. Albu, Completely irreducible meet decompositions in lattices, with applications to Grothendieck categories and torsion theories (I), Bull. Math. Soc. Sci. Math. Roumanie 52 (100) (2009), 393–419.
T. Albu, A seventy year jubilee: The Hopkins-Levitzki Theorem, in “Ring and Module Theory”, Trends in Mathematics, edited by T. Albu, G. F. Birkenmeier, A. Erdoğan, and A. Tercan, Birkhäuser, Basel, 2010, pp. 1–26.
T. Albu, Completely irreducible meet decompositions in lattices, with applications to Grothendieck categories and torsion theories (II), Bull. Math. Soc. Sci. Math. Roumanie 53 (101) (2010), 187–199.
T. Albu, Dual Krull dimension, Goldie dimension, and subdirect irreducibility, Glasgow Math. J. 52A (2010), 19–32.
T. Albu, The Osofsky-Smith Theorem for modular lattices, and applications (I), Comm. Algebra 39 (2011), 4488–4506.
T. Albu, The Osofsky-Smith Theorem for modular lattices, and applications (II), Comm. Algebra 42 (2014), 2663–2683.
T. Albu, Topics in Lattice Theory with Applications to Rings, Modules, and Categories, Lecture Notes, Escola de Álgebra, XXIII Brazilian Algebra Meeting, Maringá, Paraná, Brazil, 2014, 80 pages.
T. Albu, T. Dumitrescu, M. Iosif, Problem Book on Modules and Algebras, Editura Universității București, 2009, 185 pages.
T. Albu, M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie 56 (104) (2013), 33–46.
T. Albu, M. Iosif, Lattice preradicals with applications, submitted, 2014.
T. Albu, M. Iosif, M. L. Teply, Modular QFD lattices with applications to Grothendieck categories and torsion theories, J. Algebra Appl. 3 (2004), 391–410.
T. Albu, M. Iosif, M. L. Teply, Dual Krull dimension and quotient finite dimensionality, J. Algebra 284 (2005), 52–79.
T. Albu, M. Iosif, A. Tercan, The conditions (Cᵢ) in modular lattices, and applications, J. Algebra Appl. 14 (2015), to appear.
T. Albu, G. Krause, M. L. Teply, The nilpotence of the τ-closed prime radical in rings with τ-Krull dimension, J. Algebra 229 (2000), 498–513.
T. Albu, T. H. Lenagan, P. F. Smith, Ascending chains of submodules in modules having Krull dimension, Rev. Roumaine Math. Pures Appl. 41 (1996), 567–581.
T. Albu, C. Năstăsescu, Décompositions primaires dans les catégories de Grothendieck commutatives (I), J. Reine Angew. Math. 280 (1976), 172–194.
T. Albu, C. Năstăsescu, Décompositions primaires dans les catégories de Grothendieck commutatives (II), J. Reine Angew. Math. 282 (1976), 172–185.
T. Albu, C. Năstăsescu, Relative Finiteness in Module Theory, Monographs and Textbooks in Pure and Applied Mathematics 84, Marcel Dekker Inc., New York and Basel, 1984, 190 pages.
T. Albu, S. T. Rizvi, Chain conditions on quotient finite dimensional modules, Comm. Algebra 29 (2001), 1909–1928.
T. Albu, P. F. Smith, Dual relative Krull dimension of modules over commutative rings, in “Abelian Groups and Modules”, edited by A. Facchini and C. Menini, Kluwer Academic Publisher, Dordrecht, 1995, pp. 1–15.
T. Albu, P. F. Smith, Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (I), Math. Proc. Cambridge Philos. Soc. 120 (1996), 87–101.
T. Albu, P. F. Smith, Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (II), Comm. Algebra 25 (1997), 1111–1128.
T. Albu, P. F. Smith, Dual Krull dimension and duality, Rocky Mountain J. Math. 29 (1999), 1153–1165.
T. Albu, P. F. Smith, Corrigendum and Addendum to “Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (II)”, Comm. Algebra 29 (2001), 3677–3682.
T. Albu, P. F. Smith, Primality, irreducibility, and complete irreducibility in modules over commutative rings, Rev. Roumaine Math. Pures Appl. 54 (2009), 275–286.
T. Albu, P. F. Smith, Chain Conditions in Modular Lattices, unpublished notes, 2010.
T. Albu, P. F. Smith, Primal, completely irreducible, and primary meet decompositions in modules, Bull. Math. Soc. Sci. Math. Roumanie 54 (102) (2011), 297–311.
T. Albu, P. Vámos, Global Krull dimension and global dual Krull dimension of valuation rings, in “Abelian Groups, Module Theory, and Topology”, Marcel Dekker Inc., New York, 1998, pp. 37–54.
T. Albu, J. Van Den Berg, An indecomposable nonlocally finitely generated Grothendieck category with simple objects, J. Algebra 321 (2009), 1538–1545.
T. Albu, R. Wisbauer, Generators in Grothendieck categories with right perfect endomorphism rings, Osaka J. Math. 28 (1991), 295–304.
F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Second Edition, Springer-Verlag, New York, 1992.
E. Artin, Zur Theorie der hypercomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg 5 (1927), 251–260.
G. Birkhoff, Lattice Theory, 3rd ed., American Mathematical Society, Providence, RI, 1967.
G. Călugăreanu, Lattice Concepts of Module Theory, Kluwer Academic Publishers, Dordrecht, 2000.
J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules, Birkhäuser Verlag, Basel–Boston–Berlin, 2006.
P. Crawley, R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
S. Crivei, C. Năstăsescu, B. Torrecillas, On the Osofsky-Smith Theorem, Glasgow Math. J. 52A (2010), 61–87.
S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235.
N. V. Dung, Modules whose closed submodules are finitely generated, Proc. Edinb. Math. Soc. 34 (1991), 161–166.
N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending Modules, Longman Scientific & Technical, Harlow, 1990.
C. Faith, Injective Modules and Injective Quotient Rings, Lecture Notes in Pure and Applied Mathematics 72, Marcel Dekker Inc., New York and Basel, 1982.
C. Faith, Quotient finite dimensional modules with ACC on subdirectly irreducible submodules are Noetherian, Comm. Algebra 27 (1999), 1807–1810.
L. Fuchs, Wann folgt die Maximalbedingung aus der Minimalbedingung?, Arch. Math. (Basel) 8 (1957), 317–319.
P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
J. S. Golan, Torsion Theories, Pitman/Longman, New York, 1986.
R. Gordon, J. C. Robson, Krull Dimension, Mem. Amer. Math. Soc. 133, 1973.
R. Gordon, J. C. Robson, The Gabriel dimension of a module, J. Algebra 29 (1974), 459–473.
G. Grätzer, General Lattice Theory, Second Edition, Birkhäuser Verlag, Basel–Boston–Berlin, 2003.
C. Hopkins, Rings with minimal condition for left ideals, Ann. Math. 40 (1939), 712–730.
T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
B. Lemonnier, Déviation des ensembles et groupes abéliens totalement ordonnés, Bull. Sci. Math. 96 (1972), 289–303.
T. H. Lenagan, The nil radical of a ring with Krull dimension, Bull. London Math. Soc. 5 (1973), 307–311.
J. Levitzki, On rings which satisfy the minimum condition for the right-hand ideals, Compositio Math. 7 (1939), 214–222.
J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons, New York, 1987.
C. Menini, On a question concerning locally Artinian categories, Comm. Algebra 17 (1987), 1357–1363.
C. Menini, A. Orsatti, The basic ring of a locally Artinian category and applications, Arch. Math. (Basel) 49 (1987), 484–496.
T. Molien (F. E. Molin), Über Systeme höherer komplexer Zahlen, Math. Ann. 41 (1893), 83–156.
R. W. Miller, M. L. Teply, The descending chain condition relative to a torsion theory, Pacific J. Math. 83 (1979), 207–220.
I. Murase, A condition for Artinian rings to be Noetherian, Canadian J. Math. 30 (1978), 830–837.
C. Năstăsescu, Teorie della torsione, Quaderni dei Gruppi di Ricerca Matematica CNR, Università di Ferrara, 1974.
C. Năstăsescu, Inele, Module, Categorii, Editura Academiei, București, 1976.
C. Năstăsescu, Conditions de finitude pour les modules, Rev. Roumaine Math. Pures Appl. 24 (1979), 745–758.
C. Năstăsescu, Théorème de Hopkins pour les catégories de Grothendieck, in “Ring Theory”, Lecture Notes in Mathematics 825, Springer-Verlag, 1980, pp. 88–93.
C. Năstăsescu, Conditions de finitude pour les modules (II), Rev. Roumaine Math. Pures Appl. 25 (1980), 615–630.
C. Năstăsescu, Δ-Anneaux et modules Σ-injectifs. Applications aux catégories localement artiniennes, Comm. Algebra 9 (1981), 1981–1996.
C. Năstăsescu, F. Van Oystaeyen, Dimensions of Ring Theory, D. Reidel Publishing Company, Dordrecht–Boston–Lancaster–Tokyo, 1987.
E. Noether, Idealtheorie in Ringbereichen, Math. Ann. 83 (1921), 24–66.
E. Noether, Hyperkomplexe Grössen und Darstellungstheorie, Math. Z. 30 (1929), 641–692.
M. Okado, On the decomposition of extending modules, Math. Japonica 29 (1984), 939–941.
B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645–650.
B. Osofsky, P. F. Smith, Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991), 342–354.
M. Pouzet, N. Zaguia, Dimension de Krull des ensembles ordonnés, Discrete Math. 53 (1985), 173–192.
E. R. Puczyłowski, Dimensions of Modular Lattices, Universidade Federal do Rio Grande do Sul, Brasil, 1990, 38 pages.
J. E. Roos, Locally Noetherian categories and generalized strictly linearly compact rings, in “Category Theory, Homology and Their Applications II”, Lecture Notes in Mathematics 92, Springer-Verlag, 1969, pp. 197–277.
R. C. Shock, Certain Artinian rings are Noetherian, Canadian J. Math. 24 (1972), 553–556.
H. Tominaga, I. Murase, A study on Artinian rings, Math. J. Okayama Univ. 21 (1979), 115–123.
B. Stenström, Rings of Quotients, Springer-Verlag, Berlin–Heidelberg–New York, 1975.
S. Virili, A point-free approach to L-surjunctivity and stable finiteness, arXiv:1410.1643v3 [math.RA], 13 Jan 2015, 34 pages.
J. H. M. Wedderburn, On hypercomplex numbers, Proc. London Math. Soc. 6 (1908), 77–118.
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia–Reading–Paris–Tokyo–Melbourne, 1991.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



