Influência dos estados limites último e de serviço no dimensionamento de pontes e viadutos mistos de aço e concreto em seção caixão
Abstract
Composite of steel and concrete bridges and viaducts, especially those with box sections, have several advantages. But there is a wide discrepancy in the recommendations provided by the standards for verifying service limit states on bridges and viaducts. The present work summarizes the limit deflections established by the main standards and existing in the literature, and evaluates the influence of the ultimate and service limit states for the design of coffin section bridges. For this, it dimensioned 11 bridges and the influence of the ultimate and service limit states on their design was investigated. It was found that the loading that causes the plasticization of the composite section produces deflections considerably higher than those established by the standards. Although the deflection limit recommended by normalizations does not consider the effect of vibrations on the structure, it is found that the recommended limits are very severe and therefore further studies are needed to check existing criteria and others proposed, if necessary
Downloads
References
AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS (AASHTO). LRFD Bridge Design Specifications, 8th Edition, American Association of State Highway and Transportation Officials. Washington, DC, 2017.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 16694: Projeto de pontes rodoviárias de aço e mistas de aço e concreto. Rio de Janeiro, 2018.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 6118: Projeto de estruturas de concreto - Procedimento. Rio de Janeiro, 2014.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 7187: Projeto de pontes, viadutos e passarelas de concreto armado e de concreto protendido – Procedimento. Rio de Janeiro, 2003.
AUSTRALIAN STANDARD (AS). Bridge desing - Part 2: Design loads. AS 5100.2. Sydney, 2017.
BARKER, M. G.; STAEBLER, J.; BARTH, K. E. Serviceability limits and economical steel bridge design. US Deptment of Transportation, Federal Highway Administration, 2011.
BOUASSIDA, Y.; BOUCHON, E.; CRESPO, P.; CROCE, P.; DAVAINE, L.; DENTON, S.; FELDMANN, M.; FRANK, R.; HANSWILLE, G.; HENSEN, W.; KOLIAS, B.; MALAKTAS, N.; MANCINI, G.; ORTEGA, M.; SEDLACEK, G.; TSIONIS, G.. Bridge Design to Eurocodes, Worked examples. Vienna, 2012.
Canadian Structural Manual. Ministry of Transportation – Bridge Office. Ontario, 2016.
CHAVEL, B.; RIVERA, J. Steel Bridge Design Handbook Design - Example 5: Three-Span Continuous Horizontally Curved Composite Steel Tub-Girder Bridge. 2015.
CHEN, Y.; DONG, J.; XU, T. Composite box girder with corrugated steel webs and trusses–A new type of bridge structure. Engineering Structures, v. 166, p. 354-362, 2018.
DASSAULT SISTÈMES SIMULIA. ABAQUS 6.18 2016.
DEMITZ, J. R.; MERTZ, D. R.; GILLESPIE, J. W. Deflection requirements for bridges constructed with advanced composite materials. Journal of bridge engineering, v. 8, n. 2, p. 73-83, 2003.
EUROCODE HANDBOOK 4. Guide to basis of bridge desing related to Eurocodes supplemented by practical examples. Italy, 2005.
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Eurocode - Basis of structural design. EN 1990-A1. Brussels. 2002.
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Eurocode 2: Design of concrete structures - Part 2: Concrete bridges - Design and detailing rules. EN 1992-2-2. Brussels. 2005.
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Eurocode 3: Design of steel structures - Part 2: Steel bridges. EN 1993-2-2. Brussels. 2006.
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. EN 1993-1-1. Brussels. 2005.
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Eurocode 4: Design of composite steel and concrete structures – Part 2: General rules and rules for bridges. EN 1994-2-2. Brussels. 2005.
FARIA, H. de P.; PRAVIA, Z. M. C. Metodologia de Cálculo de uma Ponte em Caixão Metálico com Laje em Concreto. In: VII Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro. Anais... Rio de Janeiro: Associação Brasileira de Pontes de Estruturas, 2014.
FU, C. C.; ZHAO, G.; YE, Y.; ZHANG, F. Serviceability-related issues for bridge live load deflection and construction closure pours. Maryland. State Highway Administration. Office of Policy & Research, 2015.
GARA, F.; RANZI, G; LEONI, G. Partial interaction analysis with shear-lag effects of composite bridges: a finite element implementation for design applications. Advanced Steel Construction, v. 7, n. 1, p. 1-16, 2011.
HUANG, D.; WEI, J.; LIU, X.; XIANG, P.; ZHANG S. Experimental study on long-term performance of steel-concrete composite bridge with an assembled concrete deck. Construction and Building Materials, v.214, p. 606-618, 2019.
KIRKCALDIE, D. K.; WOOD, J. H. Review of Australian standard AS 5100 Bridge design with a view to adoption. Volume 2. NZ Transport Agency Research Report 361. 184 p., 2008
KIRKCALDIE, D. WOOD, J. H. Review of Australian standard AS 5100 Bridge design with a view to adoption. Volume 1. NZ Transport Agency Research Report 361. 130 p., 2008.
MATAR, H. B.; BAKHOUM, M. M.; ISHAC, I. I. Comparison of Serviceability Limit State Code Requirements for Short and Medium Span Composite Bridges. In: IABSE Symposium Report. International Association for Bridge and Structural Engineering, p. 1-12, 2012.
NAKAMURA, S.; MOMIYAMA, Y.; HOSAKA, T.; HOMMA, K. New technologies of steel/concrete composite bridges. Journal of Constructional Steel Research, v. 58, n. 1, p. 99–130, 2002.
NASSIF, H.; LIU, M.; SU, D.; GINDY, M. Vibration versus deflection control for bridges with high-performance steel girders. Transportation Research Record, v. 2251, n. 1, p. 24-33, 2011.
NECHVOGLOD, V.; RAPATTONI, F. Live load deflection limits for australian road bridges. In: Austroads Bridge Conference, 4th, Adelaide, South Australia, 2000.
NICOLETTI, R. S.; SOUZA, A. S. C. Desenvolvimento de ferramenta para o anteprojeto de pontes em seção caixão mista de aço e concreto. In: Congresso Latino Americano da Construção Metálica, 8, 2019, São Paulo/SP. Anais do Construmetal 2019. São Paulo: ABCEM, 2019. 249-267
ONTARIO MINISTRY OF TRANSPORTATION AND COMMUNICATIONS HIGHWAY ENGINEERING DIVISION. Ontário Highway Bridge Design. Toronto, Ontario. 2018.
PARK, K. J.; KIM, D. Y.; HWANG, E. S. Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges. International Journal of Steel Structures, v. 18, n. 4, p. 1252-1264, 2018.
PATEL, P. LRFD design of double composite box girder bridges. 2009. 122p. Thesis (Graduation in Civil Engineering) - University of South Florida, Florida.
PEDRO, R. L.; DEMARCHE J.; MIGUEL, L. F. F.; LOPEZ, R.H. An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges. Advances in Engineering Software, v. 112, p. 31-45, 2017.
PINHO, F. O.; BELLEI, I. H. Pontes e viadutos em vigas mistas. Rio de Janeiro: IBS/CBCA, 2007.
RAMNAVAS, M. P.; PATEL, K. A.; CHAUDHAY, S.; NAGPAL, A. K. Cracked span length beam element for service load analysis of steel concrete composite bridges. Computers & Structures, v. 157, p. 201-208, 2015.
ROEDER, C. W.; BARTH, K.; BERGMAN, A. Improved live load deflection criteria for steel bridges. Transportation Research Board, National Research Council, 2002.
SOUZA, V. J. L. Contribuição ao projeto e dimensionamento da superestrutura de pontes rodoviárias em vigas mistas de aço e concreto. 2006. 133p. Dissertação (Mestrado em Estruturas) – Universidade Federal de São Carlos, São Carlos, 2006.
TADESSE, Z.; PATEL, K. A.; CHAUDHAY, S.; NAGPAL, A. K. Neural networks for prediction of deflection in composite bridges. Journal of Constructional Steel Research, v. 68, n. 1, p. 138-149, 2012.
VERÍSSIMO, G. S. Desenvolvimento de um conector de cisalhamento em chapa dentada para estruturas mistas de aço e concreto e estudo do seu comportamento. 2007. 316p. Tese (Doutorado em Engenharia de Estruturas) - Universidade Federal de Minas Gerais, Belo Horizonte, 2007.
WODZINOWSKI, R.; SENNAH, K.; AFEFY, H. M. Free vibration analysis of horizontally curved composite concrete-steel I-girder bridges. Journal of Constructional Steel Research, v. 140, p. 47-61, 2018.
ZHU, L.; NIE, J. G.; LI, F. X.; JI, W. Y. Simplified analysis method accounting for shear-lag effect of steel-concrete composite decks. Journal of Constructional Steel Research, v. 115, p. 62–80, 2015.
Os autores podem manter os direitos autorais pelo seu trabalho, mas repassam direitos de primeira publicação à revista. A revista poderá usar o trabalho para fins não-comerciais, incluindo direito de enviar o trabalho em bases de dados de Acesso Livre.