A CARACTERIZAÇÃO MORFOLÓGICA DE ÓXIDO DE GRAFENO PREPARADOS PELO MÉTODO DE HUMMERS MODIFICADO
Abstract
The development of methodologies to obtain graphene oxide from graphite is still moving much of the research, precisely because nanoscale materials have great potential for applications as adsorbents in the treatment of effluents contaminated with emerging contaminants, being a current concern. This work presents the modified synthesis via Hummers method of graphene oxide from commercially obtained graphite powder. The morphological characterization of the prepared material occurred through X-ray Diffraction, FTIR and RAMAN Spectrometry, in addition to Scanning and Transmission Electron Microscopy. The results show the formation of a nanomaterial with a high degree of oxidation and exfoliation, validating the synthesis route used showing the morphological characteristics of the material as expected in the literature.
Downloads
References
AVILA, E. S., MELO, C. C. N., SAMPAIO, T. P., MACHADO, F. M. Síntese e caracterização de óxido de grafeno e óxido de grafeno Reduzido. Revista Brasileira de Engenharia e Sustentabilidade, v.3, n.1, p.19-24, 2017
BANNOV, A.G., MANAKHOV,A., SHIBAEV A.A., UKHINA A.V, POLČÁK, J., MAKSIMOVSKII, E.A. Synthesis dynamics of graphite oxide Thermochimica Acta n.663 p.65–175. 2018
BOTAS, C. ÁLVAREZ, P., BLANCO. C., SANTAMARÍ, R., GRANDA, M., ARES, P., REINOSO, F. R., MENENDEZ, R. The effect of the parent graphite on the structure of graphene oxide. Carbon, v. 50, n. 1, p. 275–282, 2012.
BOTAS, C. ÁLVAREZ, P., BLANCO. C., SANTAMARÍ, R., GRANDA, M., ARES, P., REINOSO, F. R., MENENDEZ, R. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon, v. 65, p. 156–164, 2013
BRODIE, B.C. On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 149, p.249-259, 1859
BUCHSTEINER, A. LERF, A., PIEPER, J. Water Dynamics in Graphite Oxide Investigated with Neutron Scattering. Jounal Physics Chemincal B.,v110, n.45, p..22328-22338, 2006
CHEN, D., TANG, L., LI, J. Graphene-based materials in electrochemistry. Chemical Society Reviews, v.39, 3157-3180, 2010.
CHUA, C. K.; PUMERA, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, v. 43, n. 1, p. 291–312, 2014.
EDITORIAL. All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon. n.65, p.01-06, 2013.
EDWARDS, R. S.; COLEMAN, K. S. Graphene synthesis: relationship to applications. Nanoscale, v. 5, n. 1, p. 38–51, 2013.
FIM. F. C. Síntese e propriedades de nanocompósitos de polietileno/nanolâminas de grafeno obtidos através de polimerização in situ. Tese de Doutorado. Programa de Pós-Graduação em Ciência dos Materiais da Universidade Federal do Rio Grande do Sul. Porto Alegre,105f. 2012.
GASCHO J.L. S., COSTA S. F., RECCO, A. A. C., PEZZIN S. H.. Graphene Oxide Films Obtained by Vacuum Filtration: X-Ray Diffraction Evidence of Crystalline Reorganization. Journal of Nanomaterials.v1, p. 1-12, 2019
GE, S., YAN, M., LU, J., ZHANG, M., YU, F., YU, J., SONG, X., YU, S. Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosensors and Bioelectronics,. v.31, p.49-54, 2012.
GEIM, A. K., NOVOSELOV, K. S. The rise of graphene. Nature materials, 6, 183-191, 2007.
GOMES, M.L.M. Síntese e caracterização de óxido de grafeno e/ou grafeno pelo método de oxidação química da grafite visando suas aplicações como materiais nanoestruturados em capacitores eletroquímicos. Relatório final de iniciação científica (pibic/cnpq/inpe). 2015
HE, H., LERF, A., FORSTERS, M., RIEDL, T., KLINOWSKI, J. Solid-state NMR studies of the structure of graphite Oxide. Journal Physics Chemical. v. 100, n.51, p.19954-19958. 1996.
HOU, J., SHAO, Y., ELLIS, M. W., MOORE, R. B., YI, B. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, v.13, p.15384-15402, 2011
HUMMERS, W.S., OFFEMAN, R. Preparation of graphitic oxide. Journal of American Chemical Society, v.80, n. 6, p. 1339. 1958
JAURIS, I. M. MATOS, C. F. SAUCIER, C., LIMA E. C., ZARBIN, A. J. G., FAGAN, S. B. MACHADO, F. M., ZANELLA, I. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Physical Chemistry Chemical Physics. V. 18, p.1526-1536. 2016
JEONG, H.K., JIN, M.H., SO, K.P., LIM, S.C., LEE, Y.H. Tailoring the characteristics of graphite oxide by different oxidation times. J. Phys. D: Appl. Phys. v.42, p. 1-6. 2009
J-H. CHEN; C. JANG, S. XIAO, M. ISHIGAMI, M. S. FUHRER, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology. v. 3, p. 206 – 209, 2008.
JIN, M., JEONG, H. K., KIM, T. H., SO, K. P., CUI, Y., Yu, W. J., RA, E. J., Lee, Y .H. Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. Journal of Physics D: Applied Physics, v. 43, n. 27, p. 275402-275410, 2010.
KIM, H. ABDALA, A. A., MACOSKO, C. W. Graphene/Polymer Nanocomposites. Macromolecules, v.43, n.16, p.6515-6530, 2010
KRISHNA, R., FERNANDES, D. M., VENKATARAMANA, E., DIAS, C., VENTURA, J., TITUS, E. Improved Reduction of Graphene Oxide. Materials Today: Proceedings, v. 2, n. 1, p. 423–430, 2015
LIU, F. WU, Z, WANG, D, YU, J, JIANG, X., CHEN, X. Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal off p-nitrophenol; Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.490, p.207-214. 2016
MACHADO, D.T. Síntese de Compósitos nanoestruturados de rGO/ nanopartículas metálicas (Au e Ag) em etapa única utilizando o processo poliol modificado. 2017, 56f. Trabalho de Conclusão de Curso. Unidade da USP Instituto de Química de São Carlos. 2017
MALLESHA, M., MANJUNATHA, R., NETHRAVATHI, C., SURESH, G. S., RAJAMATHI, M., MELO, J. S., VENKATESHA, T. V. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry. v..81, n.2, p.104-108, 2011.
MARASCHIN, T.G. Preparação de óxido de grafeno e óxido de grafeno reduzido e dispersão em matriz polimérica biodegradável. Dissertação de Mestrado 2016. Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais PUC-RS, Porto Alegre, 99f.2016.
MARCANO, D.C., KOSYNKIN, D., BERLIN, V., SINITSKII, A., SUN, Z., SLESAREV, A., ALEMANY, L.B., LU, W., TOUR, J.M. Improved synthesis of grapheme oxide. ACS Nano, v. 4, p. 4806-4820. 2010
MCALLISTER, M. J., LI, J. L., ADAMSON, D. H., SCHNIEPP, H. C., ABDALA A. A., LIU, J., ALONSO, M. H., MILIUS, D. L., CAR, R., PRUD’HOMME,R. K., AKSAY I., A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, v. 19, n. 18, p. 4396–4404, 2007.
MINITHA, C.R.; LALITHA, M.; JEYACHANDRAN, Y.L.; SENTHILKUMAR, L., RAJENDRAKUMAR, R.T., Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: coaction of electrostatic and π – π interactions, Materials Chemistry and Physics,v194,n.5 p.243-252, 2017..
MOKHTAR, M.M., ABO EL ENEIN S.A., HASSAAN, M.Y., MORSY, M.S., KHALIL, M.H. Thermally Reduced Graphene Oxide: Synthesis, Structural and Electrical Properties. International Journal of Nanoparticles and Nanotechnology v.3, n.1. p.1-9. 2017
MOOSA, A. A., NOORI., J., J. Green Reduction of Graphene Oxide Using Tea Leaves Extract with Applications to Lead Ions Removal from Water. Nanoscience and Nanotechnology, v.7, n.2 p.8-47. 2017
O. JANKOVSKÝ, M. NOVÁČEK, J. LUXA, D. SEDMIDUBSKÝ, M. BOHÁČOVÁ, M. PUMERA, Z. SOFER, Concentration of nitric acid strongly influences chemical composition of graphite oxide, Chemical European . Joural. v.23 p.6432–6440, 2017
PARVEZ, K., WU, Z.S., LI, R., LIU, X., GRAF, R., FENG, X., MULLEN, K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, v. 136, n. 16, p. 6083–6091, 2014.
POH L.H. ŠANĚK, F., AMBROSI, A., ZHAO, G., SOFER, Z., PUMERA, M. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 2012, v.4, p.3515-3522, 2012
POTTS, J. R., DREYER, D. R., BIELAWSKI, C. RUOFF, R. Graphene-based polymer nanocomposites. Polymer, v. 52, n. 1, p. 5–25, 2011.
SENGUPTA, R. BHATTACHARYA, M., BANDYOPADHYAY, S., BHOWMICK, A.K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science (Oxford), v. 36, n. 5, p. 638–670, 2011
SHAO, G., LU, Y., WU, F., YANG, C., ZENG, F., WU, Q. Graphene oxide: the mechanisms of oxidation and exfoliation. Journal of Materials. Science. v. 47,n.10,. 4400-4409, 2012
SIBURIAN, R., SIHOTANG, H., RAJA, S. L., SUPENO M., SIMANJUNTAK, C. New Route to Synthesize of Graphene Nano Sheets. Oriental Journal of Chemistry v.34n.1, p.182-187, 2018
SILVA D. D. Nanocompósitos de matriz epoxídica com reforços produzidos a partir do grafite natural. Revista Matéria. v.18, n.2. p1216-1272. 2013
STAUDENMAIER, L. Verfahren zur Darstellung der Graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, v. 31, p. 1481-1499, 1898.
STRUDWICK, A. J. WEBER, N.E., SCWAB, M.G., KETTNER, M., WEITZ R.T., WUNSCH, J.R., MULLEN, K. SACHDEV, H. Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres. ACS nano, v. 9, n. 1, p. 31–42, 2015.
SUN, Y., WU, Q., SHI, G. Graphene based new energy materials. Energy & Environmental Science, v.4, p.1113-1132, 2011.
SUN, Y., WU, Q., SHI, G. Graphene based new energy materials. Energy & Environmental Science 4, p1113-1132, 2011.
TAN, M., YANG, G., WANG, T., VITIDSANT, T., JIE LI, L., WEIQ., AI, P., WU, M., ZHENG, J., TSUBAKI, N. Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation. Catalysis Science &Technology. v. 6, p.1162–1172, 2016
VIEIRA SEGUNDO, J. E. D, VILAR E. O. Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos, v. 11, n. 2 p. 54–57. 2016
WANG, Z., ZHOU, X., ZHANG, J., BOEY, F., ZHANG, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. The Journal of Physical Chemistry C, v.113 n.32, p.14071–14075, 2009.
XU, C., XU, B., GU, Y., XIONG, Z., SUN, J., ZHAO, X. S. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 6, 1388-1414, 2013.
Y. WANG, D. C. ALSMEYER, R. L. MCCREERY, Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemitry of Materials, v. 2, p. 557–563, 1990
ZHANG, D., DAI, F., ZHANG, P., An, Z., ZHAO, Y., CHEN,, L.The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Materials Sciene & Engineering C. n.96, p.684-692. 2019
ZHANG, L. L., ZHOU, R., ZHAO, X. S. Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, v. 20, p.5983–5992, 2010.
ZHOU, M., ZHAI, Y., DONG, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry.v.81, n. 14, p.5603–5613, 2009.
ZHOU, S., WEI, D., SHI, H., FENG, X., XUE, K., ZHANG, F., SONG, W. Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application. Talanta, v. 107, p.349-355, 2013.
Os autores podem manter os direitos autorais pelo seu trabalho, mas repassam direitos de primeira publicação à revista. A revista poderá usar o trabalho para fins não-comerciais, incluindo direito de enviar o trabalho em bases de dados de Acesso Livre.