POTENTIAL APPLICATION OF UHPC IN COMPOSITE STRUCTURES FOR WIND POWER GENERATION

Keywords: Advanced materials, wind energy, composite structures, fiber-reinforced concrete

Abstract

The significant growth in demand for renewable energy in recent years has posed a challenge to structural engineering due to the need for larger and more slender structures to increase generation capacity. Market demands have led to the replacement of steel towers and platforms with reinforced concrete structures, which can incorporate new advanced materials. This paper presents a literature review on the use of ultra-high-performance concrete in mixed structures for onshore and offshore wind energy generation systems. Initially, specific regulatory prescriptions for the use of reinforced concrete in offshore platforms are presented. The properties of ultra-high-performance concrete (UHPC) as well as its applications in energy generation structures are discussed. The results indicate that it is possible to reduce the passive reinforcement of reinforced concrete structures through the use of advanced cementitious materials, and that there is the possibility of applying these materials in steel-concrete composite elements.

Downloads

Download data is not yet available.

Author Biographies

Paulo Roberto Lopes Lima, Universidade Estadual de Feira de Santana

Professor Pleno da Universidade Estadual de Feira de Santana. Engenheiro Civil pela UEFS, com mestrado e doutorado em Engenharia Civil pela UFRJ, e pós-doutorado na Universidade do Minho, Portugal, com bolsa de Estagio Senior/CAPES. Especialista em Gestão da Inovação Tecnológica (UEFS). Coordena o Grupo de Pesquisa Materiais e Produtos com Fibras Vegetais (PROFIV)  para estudo numérico e experimental de sistemas construtivos que incorporem fibras vegetais, em colaboração com a NUMATS/COPPE/UFRJ, UESC, UFBA, USP e UMInho/Portugal. Atua como Docente Permanente do Mestrado em Engenharia Civil e Ambiental e da Especialização em Engenharia Estrutural, da Universidade Estadual de Feira de Santana, e como Docente Permanente do Doutorado em Engenharia Civil da Universidade Federal da Bahia. Pesquisador do LEDMA/UFBA e NUMATS/UFRJ. Atualmente é Presidente da Associação Brasileira de Ciência dos Materiais e Tecnologias Não convencionais (ABMTENC), Membro do Comitê CB02 da ABNT e do CT 303 ABECE/IBRACON.

Mojtaba Maali Amiri, Universidade Federal do Rio de Janeiro

GERO/COPPE/Universidade Federal do Rio de Janeiro

Milad Shadman, Federal University of Rio de Janeiro

GERO/COPPE/Universidade Federal do Rio de Janeiro

Feng Junkaic, China National Offshore Oil Company

China National Offshore Oil Company

Segen Farid Estefen, Universidade Federal do Rio de Janeiro

General Diretor of the National Institute for Ocean Research
Professor of Ocean Structures and Subsea Technology, COPPE - Federal University of Rio de Janeiro.
PhD Imperial College London.
Member Brazilian Academy of Sciences
Member National (Brazilian) Academy of Engineering.
Fellow ASME, Fellow SUT.
Research areas: Structural Integrity, Subsea Engineering, Offshore Renewable Energy.

Romildo Dias Toledo Filho, Universidade Federal do Rio de Janeiro
Coppe/UFRJ : Rio de Janeiro , Rio de Janeiro , BR

References

ABS, ABOS. Guide for Building and Classing Bottom-Founded Offshore Wind Turbine Installations. 2013.
ABS, ABOS. Guide for building and classing floating offshore wind turbine. The American Bureau of Shipping, Houston (TX), USA, 2020.
AZMEE, N. M.; SHAFIQ, N. Ultra-high performance concrete: From fundamental to applications. Case Studies in Construction Materials, v. 9, p. e00197, 2018.
Bureau Veritas, NI 594. Design and Construction of Offshore Concrete Structures, 2017
DACHOLLOM, G. L.; HEJAZI, F.; YUSUF, B. Development of ultra high-performance fiber reinforced concrete barge for 5 MW wind turbine. Structures. p. 1349-1368, 2023.
DNV (Det Norske Veritas). Offshore Conrete Structures. Offshore Standard DNV-OS-C502, 2004.
DNV (Det Norske Veritas). DNVGL-ST-0119: Floating wind turbine structures. Report, DNV GL, URL https://rules. dnvgl. com/docs/pdf/DNVGL/ST/2018-07/DNVGL-ST-0119. pdf, 2018.
EDWARDS, E. C.; HOLCOMBE, A.; BROWN, S.; RANSLEY, E.; HANN, M.; GREAVES, D. Evolution of floating offshore wind platforms: A review of at-sea devices. Renewable and Sustainable Energy Reviews, v. 183, p. 113416, 2023.
EWART, L. B.; BARLTROP, N.; THIES, P. R.; STRATFORD, T. Advanced concrete materials for offshore floating structures. 7th International Conference on Ocean Energy, Cherbourg, France, 2018.
FERNANDEZ, R.P.; PARDO, M. L.. Offshore concrete structures. Ocean Engineering, v. 58, p. 304-316, 2013.
GONG, J.; MA, Y.; FU, J.; HU, J.; OUYANG, X.; ZHANG, Z.; WANG, H. Utilization of fibers in ultra-high-performance concrete: A review. Composites Part B: Engineering, v. 241, p. 109995, 2022.
HAAR, C.V.D.; MARX, S. Design aspects of concrete towers for wind turbines. Journal of the South African Institution of Civil Engineering, v. 57, n. 4, p. 30-37, 2015.
JAMMES, F. X.; CESPEDES, X.; RESPLENDINO, J. Design of offshore wind turbines with UHPC. In: Proceedings of International Symposium on Ultra-High Performance Fiber-Reinforced Concrete. Marseille, France. 2013. p. 443-452.
LAGO, B. D.; FLESSATI, L.; MARVEGGIO, P.; MARTINELLI, P.; FRARACCIO, G.; DI PRISCO, C.; DI PRISCO, M. Experimental tests on shallow foundations of onshore wind turbine towers. Structural Concrete, v. 23, n. 5, p. 2986-3006, 2022.
LIN, L. et al. Damage evolution and failure analysis of the advanced transition segment behavior of wind turbine tower. Engineering Failure Analysis, v. 152, p. 107527, 2023a.
LIN, Y.; YAN, J.; WANG, Z.; ZOU, C. Theoretical models and reliability assessment of steel-UHPC-steel composite beams in offshore structures. Ocean Engineering, v. 271, p. 113739, 2023b.
MARKOWSKI, J.; LOHAUS, L. Winding Reinforced UHPC Sandwich Structures for Lightweight Jackets for Offshore Megastructures. Journal of Physics: Conference Series. IOP Publishing, p. 012027, 2019.
MATHERN, A.; VON DER HAAR, C.; MARX, S. Concrete support structures for offshore wind turbines: Current status, challenges, and future trends. Energies, v. 14, n. 7, p. 1995, 2021.
SOBEK, W.; PLANK, M.; FRETTLÖHR, B.; RÖHM, J.; CORVEZ, D. Conceptual design of an UHPFRC tower structure in segmental construction for offshore wind turbines. In: Proceedings of International Symposium on Ultra-High Performance Fiber-Reinforced Concrete. 2013. p. 423-432.
TOADER, T.N.; SCHMEER, D.; SOBEK, W. Concept for an onshore tower structure made of UHPFRC segments for wind turbines. Acta Technica Napocensis: Civil Engineering & Architecture, v. 62, n. 1, 2019.

WALIA, D.; SCHIINEMANN, P.; KUHL, M.; ADAM, F.; HARTMANN, H.; GROßMANN, J.; RITSCHEL, U. Prestressed ultra high performance concrete members for a TLP substructure for floating wind turbines. In: ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2017. p. ISOPE-I-17-304.
WU, X.; ZHANG, X.; BHATTARAI, H. B.; HWANG, H. J.; YANG, J.; KANG, S. Structural Behavior Analysis of UHPC Hybrid Tower for 3-MW Super Tall Wind Turbine Under Rated Wind Load. International Journal of Concrete Structures and Materials, v. 16, n. 1, p. 1-13, 2022.
YAN, J. B.; WANG, J. Y.; LIEW, J. R.; QIAN, X.; & ZONG, L. Ultimate strength behaviour of steel–concrete–steel sandwich plate under concentrated loads. Ocean Engineering, v. 118, p. 41-57, 2016.
ZHOU, Z.; CHEN, C.; SHEN, X.; ZHOU, X.; HUA, X. Conceptual Design of a Prestressed Precast Uhpc-Steel Hybrid Tower to Support a 15 Mw Offshore Wind Turbine. Available at SSRN 4553891., 2023.
Published
2024-07-19
How to Cite
Lima, P. R. L., Amiri, M. M., Shadman, M., Junkaic, F., Estefen, S. F., & Toledo Filho, R. D. (2024). POTENTIAL APPLICATION OF UHPC IN COMPOSITE STRUCTURES FOR WIND POWER GENERATION. Revista Tecnológica, 33(1), 37-45. https://doi.org/10.4025/revtecnol.v33i1.72072