Microbial lipases: propitious biocatalysts for various biotechnological applications
Resumo
The use of microbial lipases is very important because they have a broad spectrum of catalytic reactions. Lipases catalyze reactions in aqueous and non-aqueous media and have advantages when compared to chemical catalysts, due to their specificity, enantioselectivity and stability at pH and temperature. The interest in research for microbial lipases occurs because of their applicability in various sectors and industries, such as food and beverage production, cosmetics, pharmaceuticals, surfactants, dairy products, treatment of effluents containing oils and fats, biofuels, among others. Biocatalysts can be obtained by submerged fermentation (SF) or solid-state fermentation (SSF), which has advantages over SF, because it is possible to use agroindustrial waste as substrate or growth support for microorganisms, becoming an alternative to reduce production costs. SSF is a promising technology for enzyme production, because besides using low-cost substrates, the biocatalyst can be produced in a more concentrated form, facilitating its recovery from the culture medium when necessary. Thus, this paper intends to discuss and review studies on microbial lipases, with direct application of the fermented solid (SSF), focusing on the main microorganisms, substrates and supports used in SSF, applicability of lipases in several industrial sectors, besides presenting conversion results using different microorganisms or/and substrates.
Downloads
Referências
AGUIEIRAS, E. C., CAVALCANTI-OLIVEIRA, E. D., CAMMAROTA, M. C., FREIRE, D. M. Solid-state fermentation for the production of lipases for environmental and biodiesel applications. Cur Develop in Biotec and Bioeng, p. 123-168, 2018. DOI: https://doi.org/10.1016/B978-0-444-63990-5.00008-6.
ALABDALALL, A. H., ALANAZI, A., ALDAKEEL, S. A., ABDULAZEEZ, S., BORGIO, J. F. Molecular, physiological, and biochemical characterization of extracellular lipase production by Aspergillus niger using submerged fermentation. PeerJ, v. 8, p. e9425, 2020.
ALAMI, N. H., NASIHAH, L., UMAR, R. L. A., KUSWYTASARI, N. D., ZULAIKA, E., SHOVITRI, M. Lipase production in lipolytic yeast from Wonorejo mangrove area. In: AIP Confer Proc. AIP Publishing LLC, p. 020001, 2017. DOI: https://doi.org/10.1063/1.4985392.
ALMEIDA, A. F., DIAS, K. B., DA SILVA, A. C. C., TERRASAN, C. R. F., TAUK-TORNISIELO, S. M., CARMONA, E. C. Agroindustrial wastes as alternative for lipase production by Candida viswanathii under solid-state cultivation: purification, biochemical properties, and its potential for poultry fat hydrolysis. Enz Res, v. 2016, p. 1-15, 2016. DOI: http://dx.doi.org/10.1155/2016/1353497.
AMADI, O. C., EGONG, E. J., NWAGU, T. N., OKPALA, G., ONWOSI, C. O., CHUKWU, G. C., MONEKE, A. N. Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design. Heliyon, v. 6, p. e04566, 2020. DOI:https://doi.org/10.1016/j.heliyon.2020.e04566.
ARORA, N. K., MISHRA, J., MISHRA, V. Microbial enzymes: roles and applications in industries. Springer Nature, v. 11, p.331, 2020.
ATHANÁZIO-HELIODORO, J. C., OKINO-DELGADO, C. H., FERNANDES, C. J. D. C., ZANUTTO, M. R., PRADO, D. Z. D., DA SILVA R, A., FACANALI, R., ZAMBUZZI, W. F., MARQUES, M. M. O., FLEURI, L. F. Improvement of lipase obtaining system by orange waste-based solid-state fermentation: production, characterization and application. Prepar Biochem and Biotec, v. 48, p. 565-573, 2018. DOI: https://doi.org/10.1080/10826068.2018.1476879.
BACHA, A. B., AL-ASSAF, A., MOUBAYED, N. M., ABID, I. Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations. Saudi j of biol sci, v. 25, p. 409-417, 2018. DOI: https://doi.org/10.1016/j.sjbs.2016.10.006.
BALAJI, L., CHITTOOR, J. T., JAYARAMAN, G. Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in pretreatment of food industry effluents. Prepar biochem & biotec, v 50, p. 708-716, 2020. DOI: https://doi.org/10.1080/10826068.2020.1734936.
BARNES, N. M., KHODSE, V. B., LOTLIKAR, N. P., MEENA, R. M., DAMARE, S. R. Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech, v 8, p. 1-10, 2018. DOI: https://doi.org/10.1007/s13205-017-1043-8.
BAYRAMOGLU, G., CELIKBICAK, O., KILIC, M., ARICA, M. Y. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis. Food Chem, v. 366, p. 130699, 2022.
BEREKAA, M. M., ZAGHLOUL, T. I., ABDEL-FATTAH, Y. R., SAEED, H. M., SIFOUR, M. Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World J of Microbiol and Biotec, v. 25, p. 287-294, 2008. DOI: https://doi.org/10.1007/s11274-008-9891-3.
BHAN, C., SINGH, J. Role of microbial lipases in transesterification process for biodiesel production. Envir Sust, p. 1-10, 2020. DOI: https://doi.org/10.1007/s42398-020-00119-9.
BHARATHI, D., RAJALAKSHMI, G., KOMATHI, S. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. J of King Saud Univer-Sci, v. 31, p. 898-901, 2018. DOI: https://doi.org/10.1016/j.jksus.2017.12.018.
BHARATHI, D., RAJALAKSHMI, G. Microbial lipases: An overview of screening, production and purification. Biocat and Agric Biotec, v. 22, p. 101368, 2019. DOI: https://doi.org/10.1016/j.bcab.2019.101368.
BOUAZIZ, A., HORCHANI, H., SALEM, N. B., GARGOURI, Y., SAYARI, A. Expression, purification of a novel alkaline Staphylococcus xylosus lipase acting at high temperature. Biochem eng j, v. 54, p. 93-102, 2011. DOI: https://doi.org/10.1016/j.bej.2011.02.003.
BRABCOVÁ, J., DEMIANOVÁ, Z., VONDRÁŠEK, J., JÁGR, M., ZAREVÚCKA, M., PALOMO, J. M. Highly selective purification of three lipases from Geotrichum candidum 4013 and their characterization and biotechnological applications. J of Mol Catal B: Enzy, v. 98, p. 62-72, 2013. DOI: https://doi.org/10.1016/j.molcatb.2013.09.012.
CAI, Y. D., CHOU, K. C. Predicting Enzyme Subclass by Functional Domain Composition and Pseudo Amino Acid Composition. J of prot res, v. 4, p. 967-971, 2005. DOI: https://doi.org/10.1021/pr0500399.
ÇAKMAK, M., AYDOĞDU, H. Screening of microfungi for lipolytic activity and optimization of process parameters in lipase production by solid substrate fermentation using selected microfungi (Penicillium aurantiogriseum). Kuwait J of Sci, v. 48, p. 98-105, 2021.
CAO, X., PAN, Y., WEI, W., YUAN, T., WANG, S., XIANG, L., YUAN, Y. Single cell oil production by Trichosporon sp. Effects of fermentation conditions on fatty acid composition and applications in synthesis of structured triacylglycerols. LWT, v. 148 p. 111691, 2021.
CARTERET, C., JACOBY, J., BLIN, J. L. Using factorial experimental design to optimize biocatalytic biodiesel production from Mucor Miehei Lipase immobilized onto ordered mesoporous materials. Microp and Mesop Mat, v. 268, p. 39-45, 2018. DOI: https://doi.org/10.1016/j.micromeso.2018.04.004.
CARVALHO, J. K., PANATTA, A. A. S., SILVEIRA, M. A. D., TAV, C., JOHANN, S., RODRIGUES, M. L. F., MARTINS, C. V. B. Yeasts isolated from a lotic continental environment in Brazil show potential to produce amylase, cellulase and protease. Biotec Reports, v. 30 p. e00630, 2021. DOI: https://doi.org/10.1016/j.btre.2021.e00630.
ÇAKMAK, M., AYDOĞDU, H. Screening of microfungi for lipolytic activity and optimization of process parameters in lipase production by solid substrate fermentation using selected microfungi (Penicillium aurantiogriseum). Kuwait J of Sci, v. 48, p. 98-105, 2021.
CHAKRABORTY, K., RAJ, R. P. An extra-cellular alkaline metallolipase from Bacillus licheniformis MTCC 6824: purification and biochemical characterization. Food chem, v. 109, p. 727-736, 2008. DOI: https://doi.org/10.1016/j.foodchem.2008.01.026.
CHANDRA, P., SINGH, R., ARORA, P. K. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Fact, v. 19, p. 1-42, 2020. DOI: https://doi.org/10.1186/s12934-020-01428-8.
COLLA, L. M., FICANHA, A. M., RIZZARDI, J., BERTOLIN, T. E., REINEHR, C. O., COSTA, J. A. V. Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. BioMed Res Inter, 2015. DOI: https://doi.org/10.1155/2015/725959.
Czaja, R. (2015). Cluster-Screening - eine effiziente Methode zur Identifizierung neuer Enzyme. BioSpektrum 21:344-346.
DE MOURA DICKEL, J. D., CARVALHO, J. K., SILVEIRA, M. A. D., MENEGOTTO DOS SANTOS, P., RODRIGUES, M. L. F., FAGUNDES-KLEN, M. R., ROSA, C. A., JOHANN, S., BUZANELLO, C. V., LUCCA, R. A. S., SANTOS, A. R. O., DA ROSA, M. F Aspergillus sclerotiorum lipolytic activity and its application in bioremediation of high-fat dairy wastewater environments. Environmental Science and Pollution Research, p. 1-11, 2022.
DE SOUZA, C. E. C., RIBEIRO, B. D., COELHO, M. A. Z. Characterization and application of Yarrowia lipolytica lipase obtained by solid-state fermentation in the synthesis of different esters used in the food industry. App biochem and biotec, v. 189, p. 933-959, 2019. DOI: https://doi.org/10.1007/s12010-019-03047-5.
DENG, Z., JIANG, Y., CHEN, K., LI, J., ZHENG, C., GAO, F., LIU, X. One Biosurfactant-Producing Bacteria Achromobacter sp. A-8 and Its Potential Use in Microbial Enhanced Oil Recovery and Bioremediation. Frontiers in microbio, v. 11, p. 247, 2020. DOI: https://doi.org/10.3389/fmicb.2020.00247.
DIVYA, K., PADMA, P. N. Psychrophilic yeast isolates for cold-active lipase production. Int. J. Sci. Prog. Res, v. 10, p. 93-97, 2015.
DURVAL, I. J. B., MENDONÇA, A. H. R., ROCHA, I. V., LUNA, J. M., RUFINO, R. D., CONVERTI, A., SARUBBO, L. A. Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Marine Pol Bulletin, v. 157, p. 111357, 2020. DOI: https://doi.org/10.1016/j.marpolbul.2020.111357.
EBRAHIMPOUR, A., ABD RAHMAN, R. N. Z. R., CH'NG, D. H. E., BASRI, M., SALLEH, A. B. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC biotec, v. 8, p. 1-15, 2008. DOI: https://doi.org/10.1186/1472-6750-8-96.
EDWINOLIVER, N. G., THIRUNAVUKARASU, K., NAIDU, R. B., GOWTHAMAN, M. K., KAMBE, T. N., KAMINI, N. R. Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Biores Tec, v. 101, p. 6791-6796, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.03.091.
FARINAS, C. S. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew and Sust Ener Rev, v. 52, p. 179-188, 2015. DOI: https://doi.org/10.1016/j.rser.2015.07.092.
FENG, K., HUANG, Z., PENG, B., DAI, W., LI, Y., ZHU, X., CHEN, Y., TONG, X., LAN, Y., CAO, Y. Immobilization of Aspergillus niger lipase onto a novel macroporous acrylic resin: Stable and recyclable biocatalysis for deacidification of high-acid soy sauce residue oil. Biores Tec, v. 298, p. 122553, 2020. DOI: https://doi.org/10.1016/j.biortech.2019.122553.
GAO, B., XU, T., LIN, J., ZHANG, L., SU, E., JIANG, Z., WEI, D. Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation. J of Mol Catalysis B: Enz, v. 68 p. 286-291, 2011. DOI: https://doi.org/10.1016/j.molcatb.2010.12.001.
GARCÍA-SILVERA, E. E., MARTÍNEZ-MORALES, F., BERTRAND, B., MORALES-GUZMÁN, D., ROSAS-GALVÁN, N. S., LEÓN-RODRÍGUEZ, R., TREJO-HERNÁNDEZ, M. R. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotec and app biochem, v. 65 p. 156-172, 2018. https://doi.org/10.1002/bab.1565.
GEOFFRY, K., ACHUR, R. N. Screening and production of lipase from fungal organisms. Bioc and agric biotec, v. 14, p. 241-253, 2018. DOI: https://doi.org/10.1016/j.bcab.2018.03.009.
GIRELLI, A. M., ASTOLFI, M. L., SCUTO, F. R. Agro-industrial wastes as potential carriers for enzyme immobilization: A review. Chemosphere, v. 244, p. 125368, 2019. DOI: https://doi.org/10.1016/j.chemosphere.2019.125368.
GRAJALES-HERNÁNDEZ, D. A., VELASCO-LOZANO, S., ARMENDÁRIZ-RUIZ, M. A., RODRÍGUEZ-GONZÁLEZ, J. A., CAMACHO-RUÍZ, R. M., ASAFF-TORRES, A., MATEOS-DÍAZ, J. C. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J of Biotec, v. 316, p. 6-16, 2020. DOI: https://doi.org/10.1016/j.jbiotec.2020.04.004.
GUTARRA, M. L., GODOY, M. G., MAUGERI, F., RODRIGUES, M. I., FREIRE, D. M., CASTILHO, L. R. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bior tec, v. 100, p. 5249-5254, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.08.050.
JAVED, S., AZEEM, F., HUSSAIN, S., RASUL, I., SIDDIQUE, M. H., RIAZ, M., AFZAL, M., KOUSER, A., NADEEM, H. Bacterial lipases: a review on purification and characterization. Prog in biophys and mol biol, v. 132, p. 23-34, 2018. DOI: https://doi.org/10.1016/j.pbiomolbio.2017.07.014.
JOSHI, R., SHARMA, R., KUILA, A. Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3 O4 NPs for application in waste cooking oil degradation. Bior Tec Reports, v. 5, p. 134-140, 2019. DOI: https://doi.org/10.1016/j.biteb.2019.01.005.
KARTAL, F. Enhanced esterification activity through interfacial activation and cross-linked immobilization mechanism of Rhizopus oryzae lipase in a nonaqueous medium. Biotec progress, v. 32, p. 899-904, 2016. DOI: https://doi.org/10.1002/btpr.2288.
KHAN, F. I., LAN, D., DURRANI, R., HUAN, W., ZHAO, Z., WANG, Y. The lid domain in lipases: structural and functional determinant of enzymatic properties. Front in bioeng and biotec, v. 5, p.16, 2017. DOI: https://doi.org/10.3389/fbioe.2017.00016.
KHOSLA, K., RATHOUR, R., MAURYA, R., MAHESHWARI, N., GNANSOUNOU, E., LARROCHE, C., THAKUR, I. S. Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bior tec, v. 245, p. 743-750, 2017. DOI: https://doi.org/10.1016/j.biortech.2017.08.194.
KRELING, N. E., SIMON, V., FAGUNDES, V. D., THOMÉ, A., COLLA, L. M. Simultaneous production of lipases and biosurfactants in solid-state fermentation and use in bioremediation. J of Envir Eng, v. 146, p. 04020105, 2020.
KUMAR, D., DAS, T., GIRI, B. S., VERMA, B. Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production. Renew Ener, v. 147, p. 11-24, 2020. DOI: https://doi.org/10.1016/j.renene.2019.08.110.
KUMURA, H., SATOH, M., MACHIYA, T., HOSONO, M., HAYAKAWA, T., WAKAMATSU, J. I. Lipase and protease production of dairy Penicillium sp. on milk-protein-based solid substrates. Inter j of dairy tec, v. 72, p. 403-408, 2019. DOI: https://doi.org/10.1111/1471-0307.12597.
LAN, D., QU, M., YANG, B., WANG, Y. Enhancing production of lipase MAS1 from marine Streptomyces sp. strain in Pichia pastoris by chaperones co-expression. Elec J of Biotec, v. 22, p. 62-67, 2016. DOI: https://doi.org/10.1016/j.ejbt.2016.06.003.
LEE, L. P., KARBUL, H. M., CITARTAN, M., GOPINATH, S. C., LAKSHMIPRIYA, T., TANG, T. H. Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. BioMed res inter, 2015. DOI: https://doi.org/10.1155/2015/820575.
LÓPEZ-FERNÁNDEZ, J., BENAIGES, M. D., VALERO, F. Rhizopus oryzae lipase, a promising industrial enzyme: Biochemical characteristics, production and biocatalytic applications. Catalysts, v. 10, p. 1277, 2020. DOI: https://doi.org/10.3390/catal10111277.
MADZAK, C. Engineering Yarrowia lipolytica for use in biotechnological applications: a review of major achievements and recent innovations. Mol biotec, v. 60, p. 621-635, 2018.
MAHARANA, A. K., SINGH, S. M. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J of basic microbiol, v. 58, p. 331-342, 2018.
MAHMOUD, G. A., KOUTB, M. M., MORSY, F. M., BAGY, M. M. Characterization of lipase enzyme produced by hydrocarbons using fungus Aspergillus terreus. Eur J of Biol Res, v. 5, p. 70-77, 2015.
MASSOUD, R., HADIANI, M. R., HAMZEHLOU, P., KHOSRAVI-DARANI, K. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Elec J of Biotec, v. 37, p. 56-60, 2019. DOI: https://doi.org/10.1016/j.ejbt.2018.11.003.
MELANI, N. B., TAMBOURGI, E. B., SILVEIRA, E. Lipases: from production to applications. Sep & Pur Reviews, v. 49, p. 143-158, 2020. DOI: https://doi.org/10.1080/15422119.2018.1564328.
MOFTAH, O. A. S., GRBAVČIĆ, S., ŽUŽA, M., LUKOVIĆ, N., BEZBRADICA, D., KNEŽEVIĆ-JUGOVIĆ, Z. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation. App biochem and biotec, v. 166, p. 348-364, 2012. DOI: https://doi.org/10.1007/s12010-011-9429-2.
MONTEIRO, R. R., VIRGEN-ORTIZ, J. J., BERENGUER-MURCIA, A., DA ROCHA, T. N., DOS SANTOS, J. C., ALCANTARA, A. R., FERNANDEZ-LAFUENTE, R. Biotechnological relevance of the lipase A from Candida antarctica. Cat Today, v. 362, p. 141-154, 2021.
NAGARAJAN, S. New tools for exploring "old friends-microbial lipases". App biochem and biotec, v. 168, p. 1163-1196, 2012. DOI: https://doi.org/10.1007/s12010-012-9849-7.
NAGHDI, M., TAHERAN, M., BRAR, S. K., KERMANSHAHI-POUR, A., VERMA, M., SURAMPALLI, R. Y. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Env pol, v. 234, p. 190-213, 2018. DOI: https://doi.org/10.1016/j.envpol.2017.11.060.
NIYONZIMA, F. N., MORE, S. S. Detergent-compatible bacterial amylases. App biochem and biotec, v. 174 p. 1215-1232, 2014. DOI: https://doi.org/10.1007/s12010-014-1144-3.
OLIVEIRA, F., SOUZA, C. E., PECLAT, V. R., SALGADO, J. M., RIBEIRO, B. D., COELHO, M. A., VENANCIO, A., BELO, I. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Biop Proc, v. 102 p. 268-277, 2017. DOI: https://doi.org/10.1016/j.fbp.2017.01.007.
OLIVEIRA, A. C. D., FRENSCH, G., DE ASSIS MARQUES, F., VARGAS, J. V. C., RODRIGUES, M. L. F., MARIANO, A. B. Production of methyl oleate by direct addition of fermented solid Penicillium sumatrense and Aspergillus fumigatus. Renew Energy, v. 162 p. 1132-1139, 2020. DOI: https://doi.org/10.1016/j.renene.2020.08.117.
OSTOJČIĆ, M., BUDŽAKI, S., FLANJAK, I., BILIĆ. R. B., BARIŠIĆ, I., TRAN, N. N., HESSEL, V., STRELEC, I. Production of biodiesel by Burkholderia cepacia lipase as a function of process parameters. Biotec Prog, v. 37 p. e3109, 2021. DOI: https://doi.org/10.1002/btpr.3109.
PALUZAR, H., TUNCAY, D., AYDOGDU, H. Production and characterization of lipase from Penicillium aurantiogriseum under solid-state fermentation using sunflower pulp. Bioc and Biotrans, v. 39 p. 333-342, 2021. DOI: https://doi.org/10.1080/10242422.2021.1901888.
PRECZESKI, K. P., KAMANSKI, A. B., SCAPINI, T., CAMARGO, A. F., MODKOSKI, T. A., ROSSETTO, V., VENTURIN, B., MULINARI, J., GOLUNSKI, S. M., MOSSI, A. J., TREICHEL, H. Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils. Biopr and biosyst eng, v. 41 p. 851-857, 2018. DOI: https://doi.org/10.1007/s00449-018-1919-y.
PRIYANKA, P., TAN, Y., KINSELLA, G. K., HENEHAN, G. T., RYAN, B. J. Solvent stable microbial lipases: current understanding and biotechnological applications. Biotec letters, v. 41, p. 203-220, 2019. DOI: https://doi.org/10.1007/s10529-018-02633-7.
RAMOS-SÁNCHEZ, L. B., CUJILEMA-QUITIO, M. C., JULIAN-RICARDO, M. C., CORDOVA, J., FICKERS, P. Fungal lipase production by solid-state fermentation. J of Biop & Biotec, v. 5, p. 1, 2015. DOI: 10.4172/2155-9821.1000203.
RANA, K. L., KOUR, D., SHEIKH, I., DHIMAN, A., YADAV, N., YADAV, A. N., RASTEGARI, A. A., SINGH, K., SAXENA, A. K. Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Recent advancement in white biotechnology through fungi. Springer, Cham, v. 1, p. 62, 2019. DOI: https://doi.org/10.1007/978-3-030-10480-1_1.
ROY, M., KUMAR. R., RAMTEKE, A., SIT, N. Identification of lipase producing fungus isolated from dairy waste contaminated soil and optimization of culture conditions for lipase production by the isolated fungus. Jof Microbiol, Biotec and Food Sci, v. 2021, p. 698-704, 2021. DOI: 10.15414/jmbfs.2018.8.1.698-704.
SADH, P. K., DUHAN, S., DUHAN, J. S. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bior and Biop, v. 5, p. 1-15, 2018. DOI: https://doi.org/10.1186/s40643-017-0187-z.
SAGAR, K., BASHIR, Y., PHUKAN, M. M., KONWAR, B. K. Isolation of lipolytic bacteria from waste contaminated soil: A study with regard to process optimization for lipase. Int. J. Sci. Technol. Res, v. 2, n. 10, p. 214-218, 2013.
SAHOO, R. K., DAS, A., GAUR, M., SAHU, A., SAHOO, S., DEY, S., RAHMAN, P. K. S. M., SUBUDHI, E. Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive. Prep Biochem & Biotec, v. 50, p. 578-584, 2020. DOI: https://doi.org/10.1080/10826068.2020.1719513.
SALES, J. C. S., DE CASTRO, A. M., RIBEIRO, B. D. Z., COELHO, M. A. Supplementation of watermelon peels as an enhancer of lipase and esterase production by Yarrowia lipolytica in solid-state fermentation and their potential use as biocatalysts in poly (ethylene terephthalate) (PET) depolymerization reactions. Bioc and Biotrans, v. 38, p. 457-468, 2020. DOI: https://doi.org/10.1080/10242422.2020.1782387.
SHAHEDI, M., YOUSEFI, M., HABIBI, Z., MOHAMMADI, M., AS' HABI, M. A. Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renew Energy, v. 141, p. 847-857, 2019.
SHAKERIAN, F., ZHAO, J., LI SHAO-PING. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants-A review. Chemosphere, v. 239, p. 124716, 2020. DOI: https://doi.org/10.1016/j.chemosphere.2019.124716.
SINGH, A. K., MUKHOPADHYAY, M. Overview of fungal lipase: a review. App biochem and biotec, v. 166, p. 486-520, 2012. DOI: https://doi.org/10.1007/s12010-011-9444-3.
SOCCOL, C. R., DA COSTA, E. S. F., LETTI, L. A. J., KARP, S. G., WOICIECHOWSKI, A. L., DE SOUZA, V. L. P. Recent developments and innovations in solid state fermentation. Biotec Res and Innov, v. 1, p. 52-71, 2017. DOI: https://doi.org/10.1016/j.biori.2017.01.002.
SOUZA, C. E. C., RIBEIRO, B. D., COELHO, M. A. Z. Characterization and application of Yarrowia lipolytica lipase obtained by solid-state fermentation in the synthesis of different esters used in the food industry. App biochem and biotec, v. 189, p. 933-959, 2019.
STEUDLER, S., WERNER, A., WALTHER, T. t is the mix that matters: Substrate-specific enzyme production from filamentous fungi and bacteria through solid-state fermentation. Sol State Ferment, p. 51-81, 2019. DOI: https://doi.org/10.1007/10_2019_85.
SU, Y., LIU, C., FANG, H., ZHANG, D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact, v. 19, p. 1-12, 2020. DOI: https://doi.org/10.1186/s12934-020-01436-8.
SUBROTO, E., INDIARTO, R., PANGAWIKAN, A. D., HUDA, S., YARLINA, V. P. Characteristics, immobilization, and application of Candida rugosa lipase. Food Res, v. 4, p. 1391-1401, 2020.
TAHERI-KAFRANI, A., KHARAZMI, S., NASROLLAHZADEH, M., SOOZANIPOUR, A., EJEIAN, F., ETEDALI, P., MANSOURI-TEHRANI, H. A., RAZMJOU, A., YEK, S. M. G., VARMA, R. S. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Critical Rev in Food Sci and Nutr, v. 61, p. 3160-3196, 2021. DOI: https://doi.org/10.1080/10408398.2020.1793726.
TAMBUNAN, U. S. F., RANDY, A., PARIKESIT, A. A. Design of Candida antarctica lipase B thermostability improvement by introducing extra disulfide bond into the enzyme. On J of Biol Sci, v. 14, p. 108-118, 2014.
TAO, Z., DONG, B., TENG, Z., ZHAO, Y. Classification of enzymes by deep learning. IEEE Access, v. 8, p. 89802-89811, 2020. DOI:10.1109/ACCESS.2020.2992468.
THAPA, S., LI, H., OHAIR, J., BHATTI, S., CHEN, F. C., AL, NASR. K., JOHNSON, T., ZHOU, S. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Mol biotec, v. 61, p. 579-601, 2019. DOI: https://doi.org/10.1007/s12033-019-00187-1.
TONG, X., BUSK, P. K., LANGE, L. Characterization of a new sn-1, 3-regioselective triacylglycerol lipase from Malbranchea cinnamomea. Biotec and app biochem, v. 63, p. 471-478, 2015. DOI: https://doi.org/10.1002/bab.1394.
UTAMI, T. S., HARIYANI, I., ALAMSYAH, G., HERMANSYAH, H. Production of dry extract extracellular lipase from Aspergillus niger by solid state fermentation method to catalyze biodiesel synthesis. Energy Procedia, v. 136, p. 41-46, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.10.275.
VANDENBERGHE, L. P., PANDEY, A., CARVALHO, J. C., LETTI, L. A., WOICIECHOWSKI, A. L., KARP, S. G., THOMAZ-SOCCOL, V., MARTÍNEZ-BURGOS, W. J., PENHA, R. O., HERMANN, L. W., RODRIGUES, A. O., SOCCOL, C. R. Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Syst Microbiol and Bioman, v. 1, p. 142-165, 2021. DOI: https://doi.org/10.1007/s43393-020-00015-7.
VYAS, S., CHHABRA, M. Isolation, identification and characterization of Cystobasidium oligophagum JRC1: A cellulase and lipase producing oleaginous yeast. Bior tec, v. 223, p. 250-258, 2017. DOI: https://doi.org/10.1016/j.biortech.2016.10.039.
WADIA, T., JAIN, S. K. Isolation, screening and identification of lipase producing fungi from oil contaminated soil of Shani Mandir Ujjain. Inter j of curt microbiol and app sci, v. 6, p. 1872-1878, 2017. DOI: 10.20546/ijcmas.2017.607.223.
ZHANG, Y., HE, S., SIMPSON, B. K. Enzymes in food bioprocessing-novel food enzymes, applications, and related techniques. Cur opin in food sci, v. 19, p. 30-35, 2018. DOI: https://doi.org/10.1016/j.cofs.2017.12.007.
ZULKIFLI, N. N., RASIT, N. Lipase production from solid state fermentation of copra waste associated fungus Aspergillus niger. UMT J of Underg Res, v. 2, p. 2, 2020.
Os autores podem manter os direitos autorais pelo seu trabalho, mas repassam direitos de primeira publicação à revista. A revista poderá usar o trabalho para fins não-comerciais, incluindo direito de enviar o trabalho em bases de dados de Acesso Livre.