Generalized Mixed Models - an application to longitudinal data of citrus canker

Autores

  • João Pedro Serenini Universidade Estadual de Maringá
  • Terezinha Aparecida Guedes Universidade Estadual de Maringá
  • Juliana Glória Franco Roberto Universidade Estadual de Maringá
  • William Mário de Carvalho Nunes Universidade Estadual de Maringá

DOI:

https://doi.org/10.4025/actascitechnol.v41i1.41646

Palavras-chave:

range, repeated measurements/measures, mixed models.

Resumo

There are several techniques available for longitudinal data analysis. In the last decade, much emphasis has been placed on generalized mixed models. The present work is dedicated to give an overview of this technique, with emphasis on the formulation, interpretation and inference of the model. The guidelines are given for statistical practice in general. This form of modeling was applied to data from an experiment to evaluate the resistance of 12 varieties of sweet orange to citrus canker. The experiment consisted of provoking lesions on the leaves of orange trees and monitoring the diameter of the lesion over time. The adjustment of the observed data to the proposed model provided reliable results, since the assumptions necessary for the validity of the model were satisfied. Therefore, it can be said that this methodology is adequate to model the data, since it allowed the detection of the varieties more susceptible to citrus canker.

Downloads

Não há dados estatísticos.

Biografia do Autor

João Pedro Serenini, Universidade Estadual de Maringá

Departamento de estatí­stica, mestrado em bioestatí­stica.

Downloads

Arquivos adicionais

Publicado

2019-07-04

Como Citar

Serenini, J. P., Guedes, T. A., Roberto, J. G. F., & Nunes, W. M. de C. (2019). Generalized Mixed Models - an application to longitudinal data of citrus canker. Acta Scientiarum. Technology, 41(1), e41646. https://doi.org/10.4025/actascitechnol.v41i1.41646

Edição

Seção

Estatí­stica

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2