Optimization of the extraction of bioactive compounds from Clitoria ternatea L and evaluation of encapsulation by ionotropic gelation

Autores

  • Bruna Rodrigues Santana Universidade Federal do Paraná
  • Leomara Floriano Ribeiro Universidade Federal do Paraná

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.71070

Palavras-chave:

Butterfly Bean, Capsules, Total Phenolic Compounds, Antioxidant Potential

Resumo

The aim of the study was to optimize the extraction of bioactive compounds from Clitoria ternatea L. followed by its encapsulation by ionic gelation. The extraction of the bioactive compounds, using water as solvent, was carried out with solid-liquid extractions at hot and room temperature, obtaining as a response factor the content of total phenolic compounds (TPC). The bioactive compounds of the extracts were evaluated based on the levels of TPC and total monomeric anthocyanins. Analyzes of physical, chemical, phytochemical and antioxidant potential were performed. Encapsulation was performed by ionic gelation. The capsules were evaluated by characterization and visual aspects. Simulated gastrointestinal digestibility was determined based on TPC bioaccessibility. There was no statistical difference (p ? 0.05) between the extracts. The quadratic mathematical model presented a correction coefficient, R² = 0.997 and R²adjust = 0.974. Hot extraction at 80°C 5 minutes-1 at a concentration of 0.008 g mL-1 showed a TPC of 23.91 ± 0.90 mg (EGA) g-1 and 0.97 ± 0.50 mg (MVE) g-1 for monomeric anthocyanins. For antioxidant potential, the values of ABTS, FRAP and ?-carotene/linoleic acid were 84.86 ± 1.52 µM trolox g-1, 220.83 ± 3.69 µM ferrous sulfate g-1 and 55, 95 ± 4.51%, respectively, for the same assay. The capsules had regular sizes and preserved color, high solubility (99%), encapsulation efficiency (76%). Bioaccessibility was 71% for lyophilized capsules, with greater intestinal absorption. Therefore, extracts and capsules of Clitoria ternatea L. possess bioactive compounds with an antioxidant profile.

Downloads

Não há dados estatísticos.

Referências

Ambigaipalan, P., Camargo, A. C., & Shahidi, F. (2017). Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 221, 1883–1894. https://doi.org/10.1016/j.foodchem.2016.10.058

Association of Official Analytical Chemists [AOAC]. (2010). Official methods of analysis. Association of Official Analytical Chemists.

Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in vitro bread bolus digestion with varying oral and gastric digestion parameters. Food Biophysics, 8(1), 50–59. https://doi.org/10.1007/s11483-013-9283-6

Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003

Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

Copado, C. N., Diehl, B. W. K., Ixtaina, V. Y., & Tomás, M. C. (2019). Improvement of the oxidative stability of spray-dried microencapsulated chia seed oil using Maillard reaction products (MRPs). European Journal of Lipid Science and Technology, 121(7). https://doi.org/10.1002/ejlt.201800516

Costa, L. D., Trindade, R. P., Cardoso, P. S., Colauto, N. B., Linde, G. A., & Otero, D. M. (2023). Pachira aquatica (Malvaceae): An unconventional food plant with food, technological, and nutritional potential to be explored. Food Research International, 164. https://doi.org/10.1016/j.foodres.2022.112354

Dantas, A. M., Mafaldo, I. M., Oliveira, P. M. L., Lima, M. S., Magnani, M., & Borges, G. S. C. (2019). Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chemistry, 274, 202–214. https://doi.org/10.1016/j.foodchem.2018.08.099

Dincheva, I., & Badjakov, I. (2016). Assessment of the anthocyanin variation in Bulgarian bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). International Journal of Medicine and Pharmaceutical Science, 6(3), 39-45. https://ssrn.com/abstract=2838677

Forghani, S., Zeynali, F., Almasi, H., & Hamishehkar, H. (2022). Characterization of electrospun nanofibers and solvent-casted films based on Centaurea arvensis anthocyanin-loaded PVA/?-carrageenan and comparing their performance as colorimetric pH indicator. Food Chemistry, 388. https://doi.org/10.1016/j.foodchem.2022.133057

García-Lucas, K. A., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Campanella, O. H., Patel, B. K., & Barriada-Bernal, L. G. (2017). Physical properties of spray dried Stenocereus griseus pitaya juice powder. Journal of Food Process Engineering, 40(3). https://doi.org/10.1111/jfpe.12470

Giusti, M., & Wrolstad, R. E. (2005). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Handbook of Food Analytical Chemistry, 2(2), 19–31. https://doi.org/10.1002/0471709085.ch18

Gonçalves, A., Estevinho, B. N., & Rocha, F. (2021). Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science and Technology, 114, 510–520. https://doi.org/10.1016/j.tifs.2021.06.007

Goula, A. M., Karapantsios, T. D., Achilias, D. S., & Adamopoulos, K. G. (2008). Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 85(1), 73–83. https://doi.org/10.1016/j.jfoodeng.2007.07.015

Granato, D., Fidelis, M., Haapakoski, M., Santos Lima, A., Viil, J., Hellström, J., Rätsep, R., Kaldmäe, H., Bleive, U., Azevedo, L., Marjomäki, V., Zharkovsky, A., & Pap, N. (2022). Enzyme-assisted extraction of anthocyanins and other phenolic compounds from blackcurrant (Ribes nigrum L.) press cake: From processing to bioactivities. Food Chemistry, 391. https://doi.org/10.1016/j.foodchem.2022.133240

He, B., Zhang, L. L., Yue, X. Y., Liang, J., Jiang, J., Gao, X. L., & Yue, P. X. (2016). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70–76. https://doi.org/10.1016/j.foodchem.2016.02.094

Ikrawan, Y., Rukmana, J., Yelliantty, Hariadi, H., Hidayat, & Rahmawati, L. (2023). Effect of trehalose and butterfly pea (Clitoria ternatea L.) on physicochemical characteristics of drum dried milk powder. Food Science and Technology, 43. https://doi.org/10.1590/FST.118622

Ji, M., Li, C., & Li, Q. (2015). Rapid separation and identification of phenolics in crude red grape skin extracts by high performance liquid chromatography coupled to diode array detection and tandem mass spectrometry. Journal of Chromatography A, 1414, 138–146. https://doi.org/10.1016/j.chroma.2015.08.041

Kandylis, P. (2022). Phytochemicals and antioxidant properties of edible flowers. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199937

Kanokpanont, S., Yamdech, R., & Aramwit, P. (2018). Stability enhancement of mulberry-extracted anthocyanin using alginate/chitosan microencapsulation for food supplement application. Artificial Cells, Nanomedicine and Biotechnology, 46(4), 773–782. https://doi.org/10.1080/21691401.2017.1339050

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61. https://doi.org/10.1080/16546628.2017.1361779

Kim, A. N., Lee, K. Y., Jeong, E. J., Cha, S. W., Kim, B. G., Kerr, W. L., & Choi, S. G. (2021). Effect of vacuum–grinding on the stability of anthocyanins, ascorbic acid, and oxidative enzyme activity of strawberry. LWT, 136. https://doi.org/10.1016/j.lwt.2020.110304

Kurozawa, L. E., & Hubinger, M. D. (2017). Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, 15, 50–55. https://doi.org/10.1016/j.cofs.2017.06.004

Laleh, G. H., Frydoonfar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH, and species on stability of anthocyanin pigments in four Berberis species. Pakistan Journal of Nutrition, 5(1), 90–92. https://doi.org/10.3923/pjn.2006.90.92

Luna-Vital, D., Li, Q., West, L., West, M., & Gonzalez de Mejia, E. (2017). Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs. Food Chemistry, 232, 639–647. https://doi.org/10.1016/j.foodchem.2017.03.169

Mehmood, A., Ishaq, M., Zhao, L., Yaqoob, S., Safdar, B., Nadeem, M., Munir, M., & Wang, C. (2019). Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrasonics Sonochemistry, 51, 12–19. https://doi.org/10.1016/j.ultsonch.2018.10.013

Milião, G. L., Oliveira, A. P. H., Soares, L. S., Arruda, T. R., Vieira, É. N. R., & Leite Junior, B. R. de C. (2022). Non-conventional food plants: Nutritional aspects and perspectives for industrial applications. Future Foods, 5. https://doi.org/10.1016/j.fufo.2022.100124

Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists Society, 48(2), 91–91. https://doi.org/10.1007/BF02635693

Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/ijms22073380

Selamat, S. N., Muhamad, I. I., & Sarmidi, M. R. (2009). Encapsulation of tocopherol and tocotrienol in vitamin E using spray drying technique. Materials Science.

Oguis, G. K., Gilding, E. K., Jackson, M. A., & Craik, D. J. (2019). Butterfly pea (Clitoria ternatea L.), a cyclotide-bearing plant with applications in agriculture and medicine. Frontiers in Plant Science, 10, 645. https://doi.org/10.3389/fpls.2019.00645

Oladzadabbasabadi, N., Mohammadi Nafchi, A., Ghasemlou, M., Ariffin, F., Singh, Z., & Al-Hassan, A. A. (2022). Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packaging and Shelf Life, 33, 100872. https://doi.org/10.1016/j.fpsl.2022.100872

Ongkowijoyo, P., Luna-Vital, D. A., & Gonzalez de Mejia, E. (2018). Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chemistry, 250, 113–126. https://doi.org/10.1016/j.foodchem.2018.01.055

Pasukamonset, P., Kwon, O., & Adisakwattana, S. (2016). Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocolloids, 61, 772–779. https://doi.org/10.1016/j.foodhyd.2016.06.039

Peña-Vázquez, G. I., Dominguez-Fernández, M. T., Camacho-Zamora, B. D., Hernandez-Salazar, M., Urías-Orona, V., De Peña, M. P., & de la Garza, A. L. (2022). In vitro simulated gastrointestinal digestion impacts bioaccessibility and bioactivity of sweet orange (Citrus sinensis) phenolic compounds. Journal of Functional Foods, 88, 104891. https://doi.org/10.1016/j.jff.2021.104891

Polmann, G., Badia, V., Danielski, R., Ferreira, S. R. S., & Block, J. M. (2021). Non-conventional nuts: An overview of reported composition and bioactivity and new approaches for its consumption and valorization of co-products. Future Foods, 4, 100099. https://doi.org/10.1016/j.fufo.2021.100099

Rami?, M., Vidovi?, S., Zekovi?, Z., Vladi?, J., Cvejin, A., & Pavli?, B. (2015). Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry, 23, 360–368. https://doi.org/10.1016/j.ultsonch.2014.10.002

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Sadowska-Bartosz, I., & Bartosz, G. (2022). Evaluation of the antioxidant capacity of food products: Methods, applications, and limitations. Processes, 10(10), 2031. https://doi.org/10.3390/pr10102031

Singh, J., & Tiwari, K. N. (2012). In vitro plant regeneration from decapitated embryonic axes of Clitoria ternatea L.—An important medicinal plant. Industrial Crops and Products, 35(1), 224–229. https://doi.org/10.1016/j.indcrop.2011.07.008

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. https://doi.org/10.5344/ajev.1965.16.3.144

Surya, H., Pandjaitan, M., & Marpaung, A. M. (2013). The effect of spray dried butterfly pea (Clitoria ternatea L.) leaf extract on alloxan-induced diabetic mice. In Proceedings of 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICIC - BME) (pp. 329-333). https://doi.org/10.1109/ICICI-BME.2013.6698518

Suzihaque, M. U. H., & Karim, F. D. A. (2022). Microencapsulation of Clitoria ternatea, Curcuma longa, Brassica oleracea, and Hibiscus sabdariffa using thermal effect ionic gelation technique. International Journal of Engineering Advanced Research, 4(1).

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003

Welch, C. R., Wu, Q., & Simon, J. E. (2008). Recent advances in anthocyanin analysis and characterization. Current Analytical Chemistry, 4(2), 75–101. https://doi.org/10.2174/157341108784587795

Wu, T., Lv, H., Wang, F., & Wang, Y. (2016). Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells. Journal of Agricultural and Food Chemistry, 64(11), 2280–2288. https://doi.org/10.1021/acs.jafc.6b00035

Yan, J., Cui, R., Qin, Y., Li, L., & Yuan, M. (2021). A pH indicator film based on chitosan and butterfly pudding extract for monitoring fish freshness. International Journal of Biological Macromolecules, 177, 328–336. https://doi.org/10.1016/j.ijbiomac.2021.02.137

Zhou, Y., Yang, Y., Ma, M., Xie, L., Yan, A., & Cao, W. (2022). Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules. Acta Pharmaceutica, 72(4), 483–507. https://doi.org/10.2478/acph-2022-0033

Downloads

Publicado

2025-06-17

Como Citar

Santana, B. R. ., & Ribeiro, L. F. . (2025). Optimization of the extraction of bioactive compounds from Clitoria ternatea L and evaluation of encapsulation by ionotropic gelation. Acta Scientiarum. Technology, 47(1). https://doi.org/10.4025/actascitechnol.v47i1.71070

Edição

Seção

Ciência, Tecnologia de Alimentos e Engenharia de Alimentos

Artigos mais lidos pelo mesmo(s) autor(es)