Enhanced DI Correlation Using WHWC Model Spanning the Visible and Near-Infrared Spectrum

Autores

  • Ratko Ivković MB University https://orcid.org/0000-0002-6557-4553
  • Slobodan Bojanic Antonijevic Universidad Politécnica de Madrid
  • Milos Stankovic MB University
  • Aleksandar Markovic University of Pristina in Kosovska Mitrovica
  • Zoran Milivojevic The Academy of Applied Technical and Preschool Studies
  • Petar Spalevic University of Pristina in Kosovska Mitrovica

DOI:

https://doi.org/10.4025/actascitechnol.v48i1.73644

Palavras-chave:

Digital image processing; digital image correlation; visible spectrum; image quality evaluation.

Resumo

Digital Image Correlation (DIC) is an advanced technique used for precise measurement of deformations, displacements, and strains on material surfaces through the analysis of digital images taken before and after loading. This paper introduces an alternative approach to DIC that integrates the Windowed Harmonic Weighted Correlation (WHWC) model, designed to improve accuracy and stability in the analysis of spectral images within the visible and near-infrared (NIR) spectrum. The WHWC model incorporates harmonic weighting and sinusoidal factors to enhance sensitivity to local changes, reduce the influence of noise, and maintain robustness across wavelengths ranging from 446 nm to 765 nm, covering both visible and NIR regions. Through experimental comparison with the Normalized Cross-Correlation (NCC) method, the WHWC model demonstrates significant improvements in stability and precision, achieving a correlation accuracy increase of 23% to 31%. The model was rigorously tested on a dataset of 600 spectral images, with results presented mathematically, visually, and descriptively, underscoring WHWC’s capability for precise material analysis and reliable detection of subtle variations. These qualities position WHWC as a valuable tool in fields such as material science and biomedical imaging, where consistent, high-accuracy measurements are critical for structural analysis, environmental monitoring, and diagnostic imaging.

Downloads

Não há dados estatísticos.

Referências

Šofer, M., Šofer, P., Pagá?, M., Volodarskaja, A., Babiuch, M., & Gru?, F. (2023). Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique. Polymers, 15(1), 47. https://doi.org/10.3390/polym15010047

Afara, I. O., Shaikh, R., Nippolainen, E., Querido, W., Torniainen, J., Sarin, J. K., Kandel, S., Pleshko, N., & Töyräs, J. (2021). Characterization of connective tissues using near-infrared spectroscopy and imaging. Nature Protocols, 16, 1297–1329. https://doi.org/10.1038/s41596-020-00468-z

Be?, K. B., Grabska, J., & Huck, C. W. (2020). Near-infrared spectroscopy in bio-applications. Molecules, 25(12), 2948. https://doi.org/10.3390/molecules25122948

Chen, T. Y. F., Dang, N. M., Wang, Z. Y., Chang, L. W., Ku, W. Y., Lo, Y. L., & Lin, M. T. (2021). Use of digital image correlation method to measure bio-tissue deformation. Coatings, 11(8), 924. https://doi.org/10.3390/coatings11080924

Chen, Z., Quan, C., Zhu, F., & He, X. (2015). A method to transfer speckle patterns for digital image correlation. Measurement Science and Technology, 26(9), 095201. https://doi.org/10.1088/0957-0233/26/9/095201

Chen, Z., Shao, X., Xu, X., & He, X. (2018). Optimized digital speckle patterns for digital image correlation. Applied Optics, 57(4), 884-893. https://doi.org/10.1364/AO.57.000884

Dong, Y., Kakisawa, H., & Kagawa, Y. (2015). Development of microscale pattern for digital image correlation up to 1400°C. Optics and Lasers in Engineering, 68, 7-15. https://doi.org/10.1016/j.optlaseng.2014.12.003

Duan, X., Xu, H., Dong, R., Lin, F., & Huang, J. (2023). Digital image correlation based on convolutional neural networks. Optics and Lasers in Engineering, 160, 107234. https://doi.org/10.1016/j.optlaseng.2022.107234

Hansen, R. S., Waldram, D. W., & Thai, T. Q. (2021). Super resolution digital image correlation (SR-DIC): An alternative to image stitching at high magnifications. Experimental Mechanics, 61, 1351–1368. https://doi.org/10.1007/s11340-021-00729-2

He, X., Zhou, R., Liu, Z., Yang, S., Chen, K., & Li, L. (2023). Review of research progress and development trend of digital image correlation. Multidiscipline Modeling in Materials and Structures, 20(1), 81-114. https://doi.org/10.1108/MMMS-07-2023-0242

Hou, Z., Yuan, R., Chen, Y., & Sun, W. (2024). Crack propagation process in double-flawed granite under compression using digital image correlation method and numerical simulation. Scientific Reports, 14, 21424. https://doi.org/10.1038/s41598-024-72302-5

Ivkovi?, R. (2020). New model of partial filtering in implementation of algorithms for edge detection and digital image segmentation. [Doctoral thesis, Faculty of Technical Sciences, K. Mitrovica, Serbia]. https://nardus.mpn.gov.rs/handle/123456789/12374

Janeliukstis, R., & Chen, X. (2021). Review of digital image correlation application to large-scale structures. Composite Structures, 271, 114143. https://doi.org/10.1016/j.compstruct.2021.114143

Kohli, R., & Mittal, K. L. (2019). Characterization of surface contaminants and features. In Developments in Surface Contamination and Cleaning (Vol. 12, pp. 107-158). Elsevier. https://doi.org/10.1016/B978-0-12-816081-7.00004-8

Lalena, J. N., Cleary, D. A., & Duparc, O. H. (2020). Optical properties of materials. In Principles of Inorganic Materials Design (3rd ed., pp. 425-447). Wiley. https://doi.org/10.1002/9781119486879.ch9

Li, Z., Hu, H.-M., Zhang, W., Pu, S., & Li, B. (2021). Spectrum characteristics preserved visible and near-infrared image fusion algorithm. IEEE Transactions on Multimedia, 23, 306-319. https://doi.org/10.1109/TMM.2020.2978640

Liu, C., & Wei, Y. (2024). Experimental investigation on damage of concrete beam embedded with sensor using acoustic emission and digital image correlation. Construction and Building Materials, 423, 135887. https://doi.org/10.1016/j.conbuildmat.2024.135887

Melching, D., Schultheis, E., & Breitbarth, E. (2023). Generating artificial displacement data of cracked specimen using physics-guided adversarial networks. arXiv. https://arxiv.org/pdf/2303.15939v3

Meng, W., Pal, A., Bachilo, S. M., Bruce, R. W., & Satish, N. (2022). Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation. Scientific Reports, 12, 11226. https://doi.org/10.1038/s41598-022-15332-1

Piekarczyk, J., Andrzej, W., Marek, W., Jaros?aw, J., Katarzyna, S., Natalia, ?.-S., Ilona, ?., & Katarzyna, P. (2022). Machine learning-based hyperspectral and RGB discrimination of three polyphagous fungi species grown on culture media. Agronomy, 12(8), 1965. https://doi.org/10.3390/agronomy12081965

Rogalski, A. (2003). Infrared detectors: Status and trends. Progress in Quantum Electronics, 27(2-3), 59-210. https://doi.org/10.1016/S0079-6727(02)00024-1

Sakudo, A. (2016). Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clinica Chimica Acta, 455, 181-188. https://doi.org/10.1016/j.cca.2016.02.009

Santos, U. J., de Melo Demattê, J. A., Menezes, R. S. C., Dotto, A. C., Guimarães, C. C. B., Alves, B. J. R., Sampaio, D. C. P., & Barretto, E. V. S. (2020). Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil. Geoderma Regional, 23, e00333. https://doi.org/10.1016/j.geodrs.2020.e00333

Sause, F. M. (2016). In situ monitoring of fiber-reinforced composites: Theory, methods, and applications. Springer.

Valle, V., Hedan, S., Cosenza, P., Fauchille, A. L., & Berdjane, M. (2015). Digital image correlation development for the study of materials including multiple crossing cracks. Experimental Mechanics, 55(2), 379-391. https://doi.org/10.1007/s11340-014-9948-1

Van Slyke, S. A., Chen, C. H., & Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied Physics Letters, 69(15), 2160-2162. https://doi.org/10.1063/1.117151

Yang, J., Tao, J. L., & Franck, C. (2021). Smart digital image correlation patterns via 3D printing. Experimental Mechanics, 61, 1181–1191. https://doi.org/10.1007/s11340-021-00720-x

Yang, Y., Qinfang, C., Rongjie, C., Aidi, H., & Yanting, W. (2023). Retrieval of soil heavy metal content for environment monitoring in mining area via transfer learning. Sustainability, 15(15), 11765. https://doi.org/10.3390/su151511765

Yu, L., & Pan, B. (2021). Overview of high-temperature deformation measurement using digital image correlation. Experimental Mechanics, 61, 1121–1142. https://doi.org/10.1007/s11340-021-00723-8

Zhang, X., Zhu, H., Lv, Z., Zhao, X., Wang, J., & Wang, Q. (2022). Investigation of biaxial properties of CFRP with the novel-designed cruciform specimens. Materials, 15(19), 7034. https://doi.org/10.3390/ma15197034

Zhang, Z., Ding, J., Zhu, C., & Wang, J. (2020). Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Molecular and Biomolecular Spectroscopy, 240, 118553. https://doi.org/10.1016/j.saa.2020.118553

Downloads

Publicado

2025-11-10

Como Citar

Ivković, R., Antonijevic, S. B. ., Stankovic, M. ., Markovic, A. ., Milivojevic, Z., & Spalevic, P. (2025). Enhanced DI Correlation Using WHWC Model Spanning the Visible and Near-Infrared Spectrum. Acta Scientiarum. Technology, 48(1), e73644. https://doi.org/10.4025/actascitechnol.v48i1.73644

Edição

Seção

Ciência da Computação