Enhanced DI Correlation Using WHWC Model Spanning the Visible and Near-Infrared Spectrum
DOI:
https://doi.org/10.4025/actascitechnol.v48i1.73644Palavras-chave:
Digital image processing; digital image correlation; visible spectrum; image quality evaluation.Resumo
Digital Image Correlation (DIC) is an advanced technique used for precise measurement of deformations, displacements, and strains on material surfaces through the analysis of digital images taken before and after loading. This paper introduces an alternative approach to DIC that integrates the Windowed Harmonic Weighted Correlation (WHWC) model, designed to improve accuracy and stability in the analysis of spectral images within the visible and near-infrared (NIR) spectrum. The WHWC model incorporates harmonic weighting and sinusoidal factors to enhance sensitivity to local changes, reduce the influence of noise, and maintain robustness across wavelengths ranging from 446 nm to 765 nm, covering both visible and NIR regions. Through experimental comparison with the Normalized Cross-Correlation (NCC) method, the WHWC model demonstrates significant improvements in stability and precision, achieving a correlation accuracy increase of 23% to 31%. The model was rigorously tested on a dataset of 600 spectral images, with results presented mathematically, visually, and descriptively, underscoring WHWC’s capability for precise material analysis and reliable detection of subtle variations. These qualities position WHWC as a valuable tool in fields such as material science and biomedical imaging, where consistent, high-accuracy measurements are critical for structural analysis, environmental monitoring, and diagnostic imaging.
Downloads
Referências
Šofer, M., Šofer, P., Pagá?, M., Volodarskaja, A., Babiuch, M., & Gru?, F. (2023). Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique. Polymers, 15(1), 47. https://doi.org/10.3390/polym15010047
Afara, I. O., Shaikh, R., Nippolainen, E., Querido, W., Torniainen, J., Sarin, J. K., Kandel, S., Pleshko, N., & Töyräs, J. (2021). Characterization of connective tissues using near-infrared spectroscopy and imaging. Nature Protocols, 16, 1297–1329. https://doi.org/10.1038/s41596-020-00468-z
Be?, K. B., Grabska, J., & Huck, C. W. (2020). Near-infrared spectroscopy in bio-applications. Molecules, 25(12), 2948. https://doi.org/10.3390/molecules25122948
Chen, T. Y. F., Dang, N. M., Wang, Z. Y., Chang, L. W., Ku, W. Y., Lo, Y. L., & Lin, M. T. (2021). Use of digital image correlation method to measure bio-tissue deformation. Coatings, 11(8), 924. https://doi.org/10.3390/coatings11080924
Chen, Z., Quan, C., Zhu, F., & He, X. (2015). A method to transfer speckle patterns for digital image correlation. Measurement Science and Technology, 26(9), 095201. https://doi.org/10.1088/0957-0233/26/9/095201
Chen, Z., Shao, X., Xu, X., & He, X. (2018). Optimized digital speckle patterns for digital image correlation. Applied Optics, 57(4), 884-893. https://doi.org/10.1364/AO.57.000884
Dong, Y., Kakisawa, H., & Kagawa, Y. (2015). Development of microscale pattern for digital image correlation up to 1400°C. Optics and Lasers in Engineering, 68, 7-15. https://doi.org/10.1016/j.optlaseng.2014.12.003
Duan, X., Xu, H., Dong, R., Lin, F., & Huang, J. (2023). Digital image correlation based on convolutional neural networks. Optics and Lasers in Engineering, 160, 107234. https://doi.org/10.1016/j.optlaseng.2022.107234
Hansen, R. S., Waldram, D. W., & Thai, T. Q. (2021). Super resolution digital image correlation (SR-DIC): An alternative to image stitching at high magnifications. Experimental Mechanics, 61, 1351–1368. https://doi.org/10.1007/s11340-021-00729-2
He, X., Zhou, R., Liu, Z., Yang, S., Chen, K., & Li, L. (2023). Review of research progress and development trend of digital image correlation. Multidiscipline Modeling in Materials and Structures, 20(1), 81-114. https://doi.org/10.1108/MMMS-07-2023-0242
Hou, Z., Yuan, R., Chen, Y., & Sun, W. (2024). Crack propagation process in double-flawed granite under compression using digital image correlation method and numerical simulation. Scientific Reports, 14, 21424. https://doi.org/10.1038/s41598-024-72302-5
Ivkovi?, R. (2020). New model of partial filtering in implementation of algorithms for edge detection and digital image segmentation. [Doctoral thesis, Faculty of Technical Sciences, K. Mitrovica, Serbia]. https://nardus.mpn.gov.rs/handle/123456789/12374
Janeliukstis, R., & Chen, X. (2021). Review of digital image correlation application to large-scale structures. Composite Structures, 271, 114143. https://doi.org/10.1016/j.compstruct.2021.114143
Kohli, R., & Mittal, K. L. (2019). Characterization of surface contaminants and features. In Developments in Surface Contamination and Cleaning (Vol. 12, pp. 107-158). Elsevier. https://doi.org/10.1016/B978-0-12-816081-7.00004-8
Lalena, J. N., Cleary, D. A., & Duparc, O. H. (2020). Optical properties of materials. In Principles of Inorganic Materials Design (3rd ed., pp. 425-447). Wiley. https://doi.org/10.1002/9781119486879.ch9
Li, Z., Hu, H.-M., Zhang, W., Pu, S., & Li, B. (2021). Spectrum characteristics preserved visible and near-infrared image fusion algorithm. IEEE Transactions on Multimedia, 23, 306-319. https://doi.org/10.1109/TMM.2020.2978640
Liu, C., & Wei, Y. (2024). Experimental investigation on damage of concrete beam embedded with sensor using acoustic emission and digital image correlation. Construction and Building Materials, 423, 135887. https://doi.org/10.1016/j.conbuildmat.2024.135887
Melching, D., Schultheis, E., & Breitbarth, E. (2023). Generating artificial displacement data of cracked specimen using physics-guided adversarial networks. arXiv. https://arxiv.org/pdf/2303.15939v3
Meng, W., Pal, A., Bachilo, S. M., Bruce, R. W., & Satish, N. (2022). Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation. Scientific Reports, 12, 11226. https://doi.org/10.1038/s41598-022-15332-1
Piekarczyk, J., Andrzej, W., Marek, W., Jaros?aw, J., Katarzyna, S., Natalia, ?.-S., Ilona, ?., & Katarzyna, P. (2022). Machine learning-based hyperspectral and RGB discrimination of three polyphagous fungi species grown on culture media. Agronomy, 12(8), 1965. https://doi.org/10.3390/agronomy12081965
Rogalski, A. (2003). Infrared detectors: Status and trends. Progress in Quantum Electronics, 27(2-3), 59-210. https://doi.org/10.1016/S0079-6727(02)00024-1
Sakudo, A. (2016). Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clinica Chimica Acta, 455, 181-188. https://doi.org/10.1016/j.cca.2016.02.009
Santos, U. J., de Melo Demattê, J. A., Menezes, R. S. C., Dotto, A. C., Guimarães, C. C. B., Alves, B. J. R., Sampaio, D. C. P., & Barretto, E. V. S. (2020). Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil. Geoderma Regional, 23, e00333. https://doi.org/10.1016/j.geodrs.2020.e00333
Sause, F. M. (2016). In situ monitoring of fiber-reinforced composites: Theory, methods, and applications. Springer.
Valle, V., Hedan, S., Cosenza, P., Fauchille, A. L., & Berdjane, M. (2015). Digital image correlation development for the study of materials including multiple crossing cracks. Experimental Mechanics, 55(2), 379-391. https://doi.org/10.1007/s11340-014-9948-1
Van Slyke, S. A., Chen, C. H., & Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied Physics Letters, 69(15), 2160-2162. https://doi.org/10.1063/1.117151
Yang, J., Tao, J. L., & Franck, C. (2021). Smart digital image correlation patterns via 3D printing. Experimental Mechanics, 61, 1181–1191. https://doi.org/10.1007/s11340-021-00720-x
Yang, Y., Qinfang, C., Rongjie, C., Aidi, H., & Yanting, W. (2023). Retrieval of soil heavy metal content for environment monitoring in mining area via transfer learning. Sustainability, 15(15), 11765. https://doi.org/10.3390/su151511765
Yu, L., & Pan, B. (2021). Overview of high-temperature deformation measurement using digital image correlation. Experimental Mechanics, 61, 1121–1142. https://doi.org/10.1007/s11340-021-00723-8
Zhang, X., Zhu, H., Lv, Z., Zhao, X., Wang, J., & Wang, Q. (2022). Investigation of biaxial properties of CFRP with the novel-designed cruciform specimens. Materials, 15(19), 7034. https://doi.org/10.3390/ma15197034
Zhang, Z., Ding, J., Zhu, C., & Wang, J. (2020). Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Molecular and Biomolecular Spectroscopy, 240, 118553. https://doi.org/10.1016/j.saa.2020.118553
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2026 Ratko Ivković, Slobodan Bojanic Antonijevic, Milos Stankovic, Aleksandar Markovic, Zoran Milivojevic, Petar Spalevic (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.











