<b>Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives</b> - doi: 10.4025/actascitechnol.v36i1.18097
DOI:
https://doi.org/10.4025/actascitechnol.v36i1.18097Keywords:
switched reluctance motor, torque ripple coefficient, fuzzy logic control (FLC), adaptive neuro fuzzy inference system (ANFIS), proportional-integral (PI) controllerAbstract
In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.
Â
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



