Geometric calibration of cameras applying least-squares method

Authors

  • Airton Marco Polidorio UEM
  • Flavio Bortolozzi Pontifica Universidade Catolica do Parana
  • Mauricio Figueiredo UEM

DOI:

https://doi.org/10.4025/actascitechnol.v20i0.3120

Keywords:

calibração de câmeras, visão por computador, mí­nimos quadrados

Abstract

To make artificial vision or computer vision possible, it is necessary to solve a series of problems of reasonable complexity. The first problem is the calibration of the cameras which will be used by the artificial vision system. The calibration process requires the, use of well-known patterns with known ℜ3 coordinates, once the basic problem consists of associating a point in ℜ3, tridimensional space, with another point in ℜ2, image plane or plane of camera retina, involving optical, electronic, electronic-numerical and mechanical phenomena that contribute with mistakes to the system. To minimize them it is necessary that the artificial vision system be redundant having more equations than variables. The least-squares method was applied to solve this system. A methodology appropriate to the acquisition of the necessary calibration patterns is also presented.

Downloads

Download data is not yet available.

Author Biography

Airton Marco Polidorio, UEM

possui graduação em Engenharia Quí­mica pela Universidade Estadual de Maringá (1987), mestrado em Engenharia Elétrica e Informática Industrial pela Universidade Tecnológica Federal do Paraná (1997) e doutorado em Ciências Cartográficas pela Universidade Estadual Paulista Júlio de Mesquita Filho (2007). Atualmente é Professor Adjunto da Universidade Estadual de Maringá. Tem experiência na área de Reconhecimento de Padrões, Visão Computacional e Processamento de Imagens Currí­culo Lattes

Published

2008-05-13

How to Cite

Polidorio, A. M., Bortolozzi, F., & Figueiredo, M. (2008). Geometric calibration of cameras applying least-squares method. Acta Scientiarum. Technology, 20, 495–503. https://doi.org/10.4025/actascitechnol.v20i0.3120

Issue

Section

Informatics

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus