<b>Evaluation of CFD simulations with wind tunnel experiments: pressure coefficients at openings in sawtooth building
DOI:
https://doi.org/10.4025/actascitechnol.v40i1.37537Keywords:
natural ventilation, air extractors and collector sheds, experimental tests, computational simulations.Abstract
 Wind tunnel experiments and Computational Fluid Dynamics (CFD) simulations are used to analyze natural ventilation in a sawtooth roof building. A 1:10 scale model is tested in an atmospheric boundary layer wind tunnel. The CFD simulations are performed with Ansys CFX software. The aim of this study is to evaluate the reliability of CFD simulation in predicting pressure data at opening height in a sawtooth roof building with wind tunnel data. The model is evaluated for prevailing wind in five directions: 0 and 45° (air extractor sheds), 90° (neutral situation) and 135 and 180° (air collector sheds). The computational grid resolution shows that the inclusion of prisms and the increase of the grid refinement in the building´s surface cause insignificant differences in Cp (wind pressure coefficient). In general, the error values below 10% indicate a good agreement between CFD simulations and wind tunnel data.
Â
Downloads

Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.
