Synthesis and characterization of a new ruthenium (II) terpyridyl diphosphine complex
DOI:
https://doi.org/10.4025/actascitechnol.v45i1.62458Keywords:
diphosphine; metal complex; ruthenium.Abstract
Ruthenium complexes have been prepared for several applications, mostly for electrocatalysis, catalytic hydrogenation, energy conversion, photolysis, medicinal chemistry, among other fields. Bipyridine and terpyridine ligands are commonly found in the metal coordination sphere, including ruthenium, largely due to the high stability exhibited by the resulting complex and the possibility of greater stereochemical control during synthesis. The combination of substituted terpyridine ligands with diphosphine ligands to the metal ruthenium occurs to a lesser extent and its catalytic potential has been examined in several studies. This paper describes the synthesis of a new ruthenium (II) aqua complex containing aryl diphosphine and substituted terpyridine ligands: [Ru(L)(totpy)(OH2)](ClO4)2 (L=Ph2PCH2CH2PPh2); (totpy=4´-(4-tolyl)-2,2´:6´,2´´-terpyridine). The synthesis route was conducted in three steps; the final and the intermediate products have shown good reaction yields; the results of the characterization of the aqua complex by cyclic voltammetry, UV-visible spectroscopy and elemental analysis are consistent with the proposed chemical structure.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.