Synthesis, morphological characterization, and evaluation of nano zero-valent iron (nZVI) in the degradation of water contaminated with POPs
DOI:
https://doi.org/10.4025/actascitechnol.v46i1.66777Keywords:
Heterogeneous catalysis; POP; nanostructured zero-valent iron; remediation; kinetic tests.Abstract
Nanostructured zero valence iron (nZVI) has been applied in advanced oxidative processes aimed at the treatment of water contaminated with Persistent Organic Pollutant (POP). Considering that such compounds cannot be eliminated by traditional treatment methods, this study proposes the synthesis of nZVI by the reduction of Iron Chloride III by sodium borohydride in the absence of O2, in ultrasound bath. The material obtained has only a wide diffraction halo at 45.13º of 2θ, with an average diameter of the crystallite calculated at 8.3 nm. The method of Brunauer, Emmett and Teller (BET method) analysis infer that the synthesized material is classified as mesoporous and showing a large surface area of 91.48 m2.g-1. According to transmission electron microscopy (TEM) the compound exhibits a core-shell type structure being the average size smaller than 50 nm. Thermogravimetric analysis demonstrates that the compound is thermally stable, exhibiting only a thermal event close to 70º C in which there is a loss of approximately 25% of mass related to water loss. The synthesis was efficient because there is no formation of metal oxides and no residue from the synthesis process according to FT-IR analyzes. To evaluate the effectiveness and present the parameters that most positively contributed to the degradation of water contaminated with 24 of the most common POPs, a chemometric study was applied considering the following variables: reaction time, concentration of applied iron nanoparticles and pH values. The approach reduces costs, time, and waste generation. Among the variables, reaction time is crucial, mainly due to solubility differences between compounds. Kinetic tests show increased efficiency after one hour, emphasizing a direct correlation between degradation rate and water solubility for the studied POPs.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



