A 0.13 µm CMOS V-band Cascode Low Noise Amplifier with Custom Transmission Line Inductors

Authors

  • Hao Wuang Leong Universiti Tunku Abdul Rahman
  • Kim Ho Yeap Universiti Tunku Abdul Rahman https://orcid.org/0000-0001-7043-649X
  • Yee Chyan Tan Universiti Tunku Abdul Rahman
  • Tun Zainal Azni Zulkifli Universiti Tunku Abdul Rahman

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.70205

Keywords:

V-band, LNA; transmission lines; RF CMOS; millimetre wave; 5G.

Abstract

This paper presents the design of a 60 GHz low noise amplifier (LNA) compliant with the IEEE 802.11ay network standards. The proposed LNA employs SilTerra 0.13 μm RF CMOS technology (April 2018 version) for its design and is developed based on the single-stage cascode topology. The performance of the design has been optimized using the source degeneration technique with gain-boosting and middle inductors. Due to the limitations of the process design kit (PDK), custom inductors have been developed for the LNA circuit. The inductors use ultra-thick metal (UTM) with a copper thickness of 3.3 µm. At 60 GHz, the proposed LNA has a simulated input reflection coefficient (S11) of -15.71 dB, reverse gain (S12) of -15.83 dB, forward gain (S21) of 7.25 dB, output reflection coefficient (S22) of -8.78 dB, noise figure (NF) of 6.79 dB and minimum noise figure (NFmin) of 6.55 dB. It is also unconditionally stable at 60 GHz with a simulated Rollett stability factor (K) of 1.27 and B1 stability factor of 0.79. The design shows high linearity, with a simulated input 1-dB compression point (P1dB) of -12.31 dBm and third order input intercept point (IIP3) of -3.09 dBm. The LNA has a 3-dB bandwidth of 9.3304 GHz, spanning from 55.35 GHz to 64.68 GHz. The power dissipation (PD) and supply voltage (VDD) of the LNA are 7.34 mW and 1.2 V, respectively.

Downloads

Download data is not yet available.

References

Aggarwal, S., Ghoshal, M., Banerjee, P., & Koutsonikolas, D. (2021). An experimental study of the performance of IEEE 802.11 ad in smartphones. Computer Communications, 169, 220-231. https://doi.org/10.1016/j.comcom.2021.01.006
As, D. E., & Yelten, M. B. (2023). A highly-linear, sub-mW LNA at 2.4 GHz in 40 nm CMOS process. Integration, 88, 278-285. https://doi.org/10.1016/j.vlsi.2022.09.010
Balasubramaniam, S., Vaesen, K., Kankuppe, A., Park, S., & Wulff, S. (2024). A D-band 13-mW dual-mode CMOS LNA for joint radar - communication in 22-nm FD-SOI CMOS. IEEE Solid-State Circuits Letters, 7, 259-262. https://doi.org/10.1109/LSSC.2024.3455889
Božanić, M., & Sinha, S. (2018). Millimeter-wave low noise amplifiers. Springer.
Das, S. M., & Ramanaiah, K. V. (2024). Blocker tolerant cascode LNA for Wifi and IoT applications. International Journal of Communication Systems, 37(11), e5799. https://doi.org/10.1002/dac.5799
Eshghabadi, F., Banitorfian, F., Noh, N. M., Mustaffa, M. T., & Manaf, A. A. (2016) Post-process die-level electromagnetic field analysis on microwave CMOS low-noise amplifier for first-pass silicon fabrication success. Integration, 52, 217-227. https://doi.org/10.1016/j.vlsi.2015.03.001
Ghasempour, Y., Silva, C. R. C. M., Cordeiro, C., & Knightly, E. W. (2017). IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi. IEEE Communications Magazine, 55(12), 186-192. https://doi.org/10.1109/MCOM.2017.1700393
Golio, M. (2000). The RF and microwave handbook. CRC Press.
Hassan, S. M. M., Yusof, Y. M., Marzuki, A., Farid, N. E., Rahim, S. A. E. A. & Ali, M. H. M. (2014). RF characteristics of 0.13-μm NMOS transistors for millimeter-wave application. Microelectronics International, 31(2), 116-120. https://doi.org/10.1108/MI-09-2013-0044
Huang, B. J., Lin, K. Y., & Wang, H. (2009). Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3049-3059. https://doi.org/10.1109/TMTT.2009.2033238
Khyalia, S. K., Zele, R. H., Chiong, C. -C., & Wang, H. (2024). A 22 - 33-GHz Gm-boosting low-power noise-canceling LNA in 40-nm CMOS process. IEEE Transactions on Microwave Theory and Techniques, 72(7), 4017-4027. https://doi.org/10.1109/TMTT.2024.3349605
Kim, Y., & Kwon, Y. (2012). A 60 GHz cascode variable-gain low-noise amplifier with phase compensation. IEEE Microwave and Wireless Components Letters, 22(7), 372-374, 2012. https://doi.org/10.1109/LMWC.2012.2199975
Leong, H. W., Yeap, K. H., & Tan, Y. C. (2020). Designs and simulations of millimetre wave on-chip single turn inductors for 0.13 µm RF CMOS process technology. International Journal of Nanoelectronics and Materials, 13(1), 189-198.
Lin, H. -T., Gao, L., Li, H. -Y., Xu, J. -X., & Zhang, X. Y. (2023, January). A 23.6 - 46.5 GHz LNA with 3 dB NF and 24 dB gain tuning range in 28-nm CMOS technology. IEEE Transactions on Circuits and Systems, 71(1), 29-39. https://doi.org/10.1109/TCSI.2023.3326325
Lin, Y. S., & Lee, C. Y. (2015). 9.99 mW 4.8 dB NF 57 - 81 GHz CMOS low‐noise amplifier for 60 GHz WPAN system and 77 GHz automobile radar system. Microwave and Optical Technology Letters, 57(3), 594-600. https://doi.org/10.1002/mop.28898
Lin, Y. S., Wang, C. C., & Lee, J. H. (2014). A low-power, low-noise and high linearity 60 GHz wideband CMOS low-noise amplifier for wireless personal area network (WPAN) systems. Analog Integrated Circuits and Signal Processing, 80(1), 39-47.
Liu, Z., Boon, C. C., & Dong, Y. (2024). A 0.6 V, 1.74 mW, 2.9 dB NF inductorless wideband LNA in 28-nm CMOS exploiting noise cancellation and current reuse. IEEE Transactions on Circuits and Systems, 71(8), 3561-3572. https://doi.org/10.1109/TCSI.2024.3408901
Mishra, A. R. (2018). Fundamentals of network planning and optimisation 2G/3G/4G: Evolution to 5G. John Wiley and Sons.
Nguyen, K., Kibria, M. G., Ishizu, K., & Kojima, F. (2019). Performance evaluation of IEEE 802.11ad in evolving Wi-Fi networks. Wireless Communications and Mobile Computing, 2019(1), 1-11. https://doi.org/10.1155/2019/4089365
Pan, D., Duan, Z., Chakraborty, S., Sun, L., & Gui, P. (2019). A 60-90-GHz CMOS double-neutralized LNA technology with 6.3-dB NF and -10dBm P-1dB. IEEE Microwave and Wireless Components Letters, 29(7), 489-491. https://doi.org/10.1109/LMWC.2019.2919631
Priyanka, C., Ratnam, D. V., & Sai, K. S. G., (2021). A Review on design of low noise amplifiers for global navigational satellite system. AIMS Electronics and Electrical Engineering, 5(3), 206-229. https://doi.org/10.3934/electreng.2021012
Wang, C., Li, Z., Li, Q., Liu, Y., & Wang, Z. (2015). A broadband 47-67 GHz LNA with 17.3 dB gain in 65-nm CMOS. Journal of Semiconductors, 36(10), 105010-1-105010-6. https://doi.org/10.1088/1674-4926/36/10/105010
Yao, T., Gordon, M. Q., Tang, K. K. W., Yau, K. H. K., Yang, M. -T., Schvan, P., & Voinigescu, S. P. (2007). Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE Journal Solid-State Circuits, 42(5), 1044-1057. https://doi.org/10.1109/JSSC.2007.894325
Yeh, H. C., Liao, Z. Y., & Wang, H. (2011). Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3441-3454. https://doi.org/10.1109/TMTT.2011.2173350

Downloads

Published

2025-03-24

How to Cite

Leong, H. W. ., Yeap, K. H., Tan, Y. C. ., & Zulkifli, T. Z. A. . (2025). A 0.13 µm CMOS V-band Cascode Low Noise Amplifier with Custom Transmission Line Inductors. Acta Scientiarum. Technology, 47(1), e70205. https://doi.org/10.4025/actascitechnol.v47i1.70205

Issue

Section

Electrical Engineering