Biological and in silico studies of methyl 2-(2-methoxy-2-oxoethyl)-4-methylfuran-3-carboxylate as a promising antimicrobial agent

Authors

  • Khudaverdi Ganbarov Baku State University
  • Alakbar Huseynzada Baku State University https://orcid.org/0000-0002-6342-4260
  • Gaoussou Binate Baku State University
  • Koray Sayin Sivas Cumhuriyet University
  • Nurlana Sadikhova Baku State University
  • Valeh Ismailov Baku State University
  • Niftali Yusubov Baku State University
  • Gamze Tuzun Sivas Cumhuriyet University
  • Mustafa Demiralp Sivas Cumhuriyet University
  • Abdallah Ahmed Khalil Algherbawi Sivas Cumhuriyet University

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.70564

Keywords:

Methyl 2-(2-methoxy-2-oxoethyl)-4-methylfuran-3-carboxylate; antimicrobial agent; gram-positive and gram-negative bacteria; fungi of genus Candida; MIC.

Abstract

Herein, we report the biological and in silico investigations of synthesized furan derivative as a promised antimicrobial agent. The biological activity of synthesized targeted compound was investigated against opportunistic gram-positive (Bacillus mesentericus, B. subtilis and Staphylococcus aureus) and gram-negative (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) bacteria, as well as yeast of genus Candida (C. albicans, C. guillermondii and C. tropicalis). The studied substance inhibited the growth of all bacteria and fungi at concentrations of 0.3-0.05%, whereas MIC in relation to the test organisms varied between 62.5 and 15.6 µg mL showing the lowest value for S. aureus and A. baumannii. The obtained results were also compared with the activity of pristine antibiotics (gentamicin and fluconazole), which revealed the more potent activity of the targeted compound than that of antibiotics. Computational analyses of the studied compound are performed at M06-2X/6-31+G(d,p) level in the water. Molecular docking calculations revealed 2CCG (TMK) and 4FUV (CarO) proteins as target proteins in the case of S. aureus and A. baumannii respectively, whereas p450 cytochrome analyses demonstrated the inhibition of CYP2C9 protein. ADME properties and MM-GBSA analyses showed that the studied compound exhibits better results than pristine antibiotic as in the case of experimental analysis.

Downloads

Download data is not yet available.

References

Ahmad, I. (2015). Sulfones: An important class of organic compounds with diverse biological activities. International journal of pharmacy and pharmaceutical science, 7(3), 19-27.
Alizadeh, M., Jalal, M., Hamed, K., Saber, A., Kheirouri, S., Pourteymour Fard Tabrizi, F., & Kamari, N. (2020). Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. Journal of Inflammation Research, 13, 451-463. https://doi.org/10.2147/JIR.S262132
Althagafi, I., El-Metwaly, N., & Farghaly, T. (2019). New series of thiazole derivatives: Synthesis, structural еlucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 24(9), 1-23. https://doi.org/10.3390/molecules24091741
Balouiri, M., Sadiki, M., & Ibnsouda, S. (2016). Methods for in vitro evaluation antimicrobial activity: a review. Journal of Pharmaceutical analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Berdis, A. J. (2017). Inhibiting DNA polymerases as a therapeutic intervention against cancer. Frontiers in Molecular Biosciences, 4, 78. https://doi.org/10.3389/fmolb.2017.00078
Banerjee, R., Kumar, H. K. S., & Banerjee, M. (2015). Medicinal significance of furan derivatives: a review. International Journal of Research in Phytochemistry and Pharmacology, 5(3), 48-57.
Bielawski, K., Leszczyńska, K., Kahira, Z., Bielawska, A., Michalak, O., Daniluk, T., Staszewska-Krajewska, O., Czajkowska, A., Pawłowska, N., & Gornowicz, A. (2017). Synthesis and antimicrobial activity of chiral quaternary N-spero ammonium bromides with 3',4'-dihydro-1-n-spero[isoindoline-2,2'-isoquinoline] skeleton. Drug Design Development and Therapy, 11, 2015-2028. https://doi.org/10.2147/DDDT.S133250
Deepa, G., & Jain, D. (2015). Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. Journal of Advanced Pharmaceutical Technology and Research, 6(3), 114-117. https://doi.org/ 10.4103/2231-4040.161507
Delost, M. D., Smith, D. T., Anderson, B. J., & Njardarson, J. T. (2018). From oxiranes to oligomers: Architectures of US FDA approved pharmaceuticals containing oxygen heterocycles. Journal of Medicinal Chemistry, 61(24), 10996-11020. https://doi:10.1021/acs.jmedchem.8b00876
Elkhalifa, D., Al-Hashimi, I., Al-Moustafa, A., & Khalil, A. (2021). A comprehensive review on the antiviral activities of chalcones. Journal of Drug Targeting, 29(4), 403-419. https://doi.org/10.1080/1061186X.2020.1853759
Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren,T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. Journal of Medicinal Chemistry, 49(21), 6177-6196. https://doi.org/10.1021/jm051256o
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shaw, D. E., Shelley, M., Perry, J. K., Francis, P., & Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739-1749. https://doi.org/10.1021/jm0306430
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., … Fox, D. J. (2009). Gaussian 09, Revision D.01. Gaussian, Inc.
Furuya, H., Meyer, U. A., Gelboin, H. V., & Gonzalez, F. J. (1991). Polymerase chain reaction-directed identification, cloning, and quantification of human CYP2C18 mRNA. Molecular pharmacology, 40(3), 375-382.
GaussView (2009). Version 6, Roy Dennington (Todd Keith, and John Millam). Semichem Inc.
Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal Chemistry, 47(7), 1750-1759. https://doi.org/10.1021/jm030644s
Topolcan, O., & Holubec Jr, L. (2008). The role of thymidine kinase in cancer diseases. Expert Opinion on Medical Diagnostics, 2(2), 129-141.
Huseynzada, A. E., Jelsch, C., Akhundzada, H. N., Soudani, S., Ben Nasr, C., Doria, F., Hasanova, U. A., Freccero, M., Gakhramanova, Z., Ganbarov, K., & Najafov, B. (2021). Synthesis, crystal structure and antibacterial studies of 2,4,6-trimetoxybenzaldehyde based dihydropyrimidine derivatives. Journal of Molecular Structure, 1241, 130678. https://doi.org/10.1016/j.molstruc.2021.130678
Huseynzada, A., Jelsch, C., Akhundzada, H. V., Soudani, S., Nasr, C. B., Sayin, K., Demiralp, M., Hasanova, U., Eyvazova, G., Gakhramanova, Z., & Abbasov, V. (2023). Crystal structure, Hirshfeld surface analysis, computational and antifungal studies of dihydropyrimidines on the basis of salicylaldehyde derivatives. Journal of the Iranian Chemical Society, 20(1), 109-123.
Ismailov, V. M., Ibragimova, G. G., Sadykhova, N. D., Mamedova, Z. A., & Yusubov, N. N. (2017). Synthesis of functionally substituted furan and resorcinol derivatives from dimethyl 3-oxopentanedioate. Russian Journal of Organic Chemistry, 53, 950-952. https://doi.org/10.1134/S1070428017060239
Ismiev, A., Shoaib, M., Dotsenko, V., Ganbarov, K., Israilova, A., & Magerramov, A. (2020). Synthesis and Biological Activity of 8-(Dialkylamino)-3-aryl-6-oxo-2,4-dicyanobicyclo[3.2.1]octane-2,4-dicarboxylic Acids Diethyl Esters. Russian Journal of General Chemistry, 90(8), 1418-1425. https://doi.org/10.1134/S1070363220080071
Jebli, N., Hamimed, S., & Hecke, K. (2020). Synthesis, antimicrobial activity and molecular docking study of novel α-(diphenylphosphoryl)- and α-(diphenylphosphorothioyl) cycloalkanone Oximes. Chemistry and Biodiversity, 17(8), 1-24. https://doi.org/10.1002/cbdv.202000217
Lagemaat, M., Stockbroekx, V., Geertsema-Doornbusch, G., Dijk M., Carniello, V., Woudstra, W., Mei, H., Busscher, H., & Ren Y. (2022). A comparison of the adaptive response of Staphylococcus aureus vs. Streptococcus mutans and the development of chlorhexidine resistance. Frontiers in Microbiology, 13, 861890. https://doi.org/10.3389/fmicb.2022.861890
LoÄŸoÄŸlu, E., Yilmaz, M., KatircioÄŸlu, H., Yakut, M., & Mercan, S. (2010). Synthesis and biological activity studies of furan derivatives. Medicinal Chemistry Research, 19(5), 490-497. https://doi:10.1007/s00044-009-9206-8
Mehrabani, M., Safa, K., Rahimi, M., Alyari, M., Ganbarov, K., & Kafil, H. (2020). Thiazolidine-2-thione and 2-imino-1,3-dithiolane derivatives: synthesis and evaluation of antimicrobial activity. Phamaceutical Chemistry Journal, 54(6), 588-595. https://doi.org/10.1007/s11094-020-02244-5
Mussi, M. A., Relling, V. M., Limansky, A. S., & Viale, A. M. (2007). CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for L-ornithine uptake. FEBS letters, 581(29), 5573-5578. https://doi.org/10.1016/j.febslet.2007.10.063
Obi, G., Chukwujekwu, J., & Fanie, R. (2020). Synthesis and antimicrobial activity of new prenylated 2-pyrone derivatives. Synthetic Communications, 50(5), 726-734. https://doi.org/10.1080/00397911.2020.1718710
Poirel, L., & Nordmann, P. (2006). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clinical Microbiology and Infection, 12(9), 826-836. https://doi.org/10.1111/j.1469-0691.2006.01456.x
Rani, V., & Ravindranath, K. (2016). Synthesis and antimicrobial activity of novel pyrazole-5-one containing 1, 3, 4-oxadiazole sulfonyl phosphonates. American Journal of Organic Chemistry, 6(1), 1-7. https://doi:10.5923/j.ajoc.20160601.01
Saleh, S. S., Siham, S. A., & Israa, A. M. (2019). Biological activity study for some heterocyclic compounds and their impact on the gram positive and negative bacteria. Energy Procedia, 157, 296-306. https://doi.org/10.1016/j.egypro.2018.11.194
Sariyer, E. (2022). The role of Acinetobacter baumannii CarO outer membrane protein in carbapenems influx. Research in Microbiology, 173(6-7), 103966. https://doi.org/10.1016/j.resmic.2022.103966
Schrí¶dinger Release 2021-2: LigPrep. (2021a). Schrí¶dinger, LLC.
Schrí¶dinger Release 2021-2: Maestro. (2021b).Schrí¶dinger, LLC.
Schrí¶dinger Release 2021-2: QikProp. (2021c). Schrí¶dinger, LLC.
Simo Tchuinte, P. L., Rabenandrasana, M. A. N., Kowalewicz, C., Andrianoelina, V. H., Rakotondrasoa, A., Andrianirina, Z. Z., Enouf, V., Ratsima, E. H., Randrianirina, F., & Collard, J. M. (2019). Phenotypic and molecular characterisations of carbapenem-resistant Acinetobacter baumannii strains isolated in Madagascar. Antimicrobial Resistance and Infection Control, 8(31), 1-9. https://doi.org/10.1186/s13756-019-0491-9
Shui, Y., Jiang, Q., Lyu, X., Wang, L., Lin, Y., Ma, Q., Gong, T., Zeng, J., Yang, R., & Li, Y. (2021). Inhibitory effects of sodium new houttuyfonate on growth and biofilm formation of Streptococcus mutans. Microbial Pathogenesis, 157, 104957. https://doi.org/10.1016/j.micpath.2021.104957
Theuretzbacher, U. (2013). Global antibacterial resistance: The never-ending story. Journal of Global Antimicrobial Resistance, 1(2), 63-69. https://doi.org/10.1016/j.jgar.2013.03.010
Yu, Z., Wang, Y., Lu, J., Guo, J., & Bond, P. (2021). Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. The ISME Journal, 15(7), 2117-2130. https://doi.org/10.1038/s41396-021-00909-x
Zaman, S., Hussain, M., & Nye, R. (2017). A Review on antibiotic resistance: Alarm bells are ringing. Cureus Journal of Medical Sciences, 9(6), 1-9.
Zaman A., Ikram Ahmad, I., Pervaiz, M., Ahmad, S., Kiran, S., Khan, M. A., Gulzar, T., & Kamal, T. (2019). A novel synthetic approach for the synthesis of pyrano[3,2-c] quinolone-3carbaldehydes by using modified Vilsmeier Haack reaction, as potent antimicrobial agents. Journal of Molecular Structure, 1180, 227-236. https://doi.org/10.1016/j.molstruc.2018.11.030

Downloads

Published

2025-03-25

How to Cite

Ganbarov, K. ., Huseynzada, A., Binate, G. ., Sayin, K. ., Sadikhova, N. ., Ismailov, V. ., Yusubov, N. ., Tuzun, G. ., Demiralp, M. ., & Algherbawi, A. A. K. . (2025). Biological and in silico studies of methyl 2-(2-methoxy-2-oxoethyl)-4-methylfuran-3-carboxylate as a promising antimicrobial agent. Acta Scientiarum. Technology, 47(1), e70564. https://doi.org/10.4025/actascitechnol.v47i1.70564

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus