Potential biological targets prediction and adme profiling of methyl group containing phenyl hydrazones

Authors

  • Gulnar Tofiq Atakishiyeva Baku State University https://orcid.org/0000-0002-9659-5218
  • Ayten Muzeffer Qajar Baku State University
  • Gulnara Vali Babayeva Baku State University / Azerbaijan State Pedagogical University
  • Nazrin Rafael Zeynalli Baku State University
  • Nigar Eyvaz Ahmadova Baku State University
  • Namiq Qurbet Shikhaliyev Baku State University

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.70639

Keywords:

Mapping of bioavailability radar of Phenylhydrazones; biological activities; BOILED-Egg; ADME profiling; lipinski drug ability criteria.

Abstract

Hydrazones characterized by the azomethine group (NHN=CH-) are recognized for their potent antimicrobial properties. Concurrently, compounds featuring a methyl group are utilized in the treatment of bacterial infections in humans and animals. Taking all this into account, Swiss ADME and Swiss Targeted Prediction software was used to study biological targets of the synthesized compounds and to create their ADME profiles. New biological targets for phenylhydrazones include Mapping of Bioavailability Radar of substances, ADME Profiling, Egan BOILED EGG, Lipinski Drug ability (ROF) criteria and biological activities based on the obtained results. Thus, obtained results allow us to say that synthesized phenylhydrazones are able to show biological activity.

Downloads

Download data is not yet available.

References

Al-Kahraman, Y. M., Yasinzai, M., & Singh, G. S. (2012). Evaluation of some classical hydrazones of ketones and 1, 2-diketones as antileishmanial, antibacterial and antifungal agents. Archives of Pharmacal Research, 35, 1009-1013. https://doi.org/10.1007/s12272-012-0608-7
Armstrong, M. S., Finn, P. W., Morris, G. M., & Richards, W. G. (2011). Improving the accuracy of ultrafast ligand-based screening: incorporating lipophilicity into ElectroShape as an extra dimension. Journal of Computer-aided Molecular Design, 25, 785-790. https://doi.org/10.1007/s10822-011-9463-8
Armstrong, M. S., Morris, G. M., Finn, P. W., Sharma, R., Moretti, L., Cooper, R. I., & Richards, W. G. (2010). ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics. Journal of Computer-aided Molecular Design, 24, 789-801. https://doi.org/10.1007/s10822-010-9374-0
Atakishiyeva, G. T., Qajar, A. M., Babayeva, G. V., Mukhtarova, S. H., Zeynalli, N. R., Ahmedova, N. E., & Shikhaliyev, N. Q. (2023), Biological New Targets Prediction & ADME Profiling Of 1, 1-Dichlordiazodienes On The Basis Of O-Nitrobenzoic Aldehyde, New Materials. Compounds and Applications, 7(2), 84-92
Ballester, P. J., & Richards, W. G. (2007). Ultrafast shape recognition to search compound databases for similar molecular shapes. Journal of Computational Chemistry, 28(10), 1711-1723. https://doi.org/10.1002/jcc.20681
Cocco, M. T., Congiu, C., Lilliu, V., & Onnis, V. (2006). Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine-5-carbonitrile derivatives. Bioorganic and Medicinal Chemistry, 14(2), 366-372. https://doi.org/10.1016/j.bmc.2005.08.012
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357-W364. https://doi.org/10.1093/nar/gkz382
Dharampreet, S., Ramanjeet, K., Patil, R. K., & Patil, H. C. (2020). A review on: Computer Aided Drug Design. JETIR, 7(3) 1165-1176.
El-Azab, A. S., Ghabbour, H. A., El-Husseiny, W. M., Maarouf, A. R., Mohamed, M. A., & Abdel-Aziz, A. A. M. (2016). Lewis acid-promoted direct synthesis of N-unsubstituted hydrazones via the reaction of hydrazine with acetophenone and isatin derivatives. Russian Journal of General Chemistry, 86, 2837-2844. https://doi.org/10.1134/S1070363216120471
Januario, J. P., De Souza, T. B., Lavorato, S. N., Maiolini, T. C., Domingos, O. S., Baldim, J. L., Folquitto, L. R. S., Soares, M. G., Chagas-Paula, D. A., Dias, D. F., & Dos Santos, M. H. (2018). Design and synthesis of new benzophenone derivatives with in vivo anti-inflammatory activity through dual inhibition of edema and neutrophil recruitment. Molecules, 23(8), 1859. https://doi.org/10.3390/molecules23081859
Qacar, A. M., Əbdí¼lov, M. S., İbrahimova, Åž. A., Sí¼leymanova, G. T., Babayeva, G. V., Şıxaliyev, N. Q., & MÉ™hÉ™rrÉ™mov, A. M. (2020). 4-Metil benzaldehid É™sasinda dixlordiazabutadienlÉ™rin sintezi. Pedaqoji Universitetin XÉ™bÉ™rlÉ™ri, C68(N1), 39-47
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4-17. https://doi.org/10.1016/S0169-409X(96)00423-1
Liu, X., Jiang, H., & Li, H. (2011). SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening. Journal of Chemical Information and Modeling, 51(9), 2372-2385. https://doi.org/10.1021/ci200060s
Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M., & Letourneux, Y. (2004). Synthesis and antifungal activity of cholesterol-hydrazone derivatives. European Journal of Medicinal Chemistry, 39(12), 1067-1071. https://doi.org/10.1016/j.ejmech.2004.07.005
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T., & Pombeiro, A. J. L. (2018). Pnicogen, halogen and hydrogen bonds in (E)-1-(2, 2-dichloro-1-(2-nitrophenyl) vinyl)-2-(para-substituted phenyl)-diazenes. Dyes and Pigments, 159, 135-141. https://doi.org/10.1016/j.dyepig.2018.06.022
Yousuf, M., Rafi, S., Ishrat, U., Shafiga, A., Dashdamirova, G., Leyla, V., & Iqbal, H. (2022). Potential Biological Targets Prediction, ADME Profiling, and Molecular Docking Studies of Novel Steroidal Products from Cunninghamella blakesleana. Medicinal Chemistry, 18(2), 288-305. https://doi.org/10.2174/1573406417666210608143128.
Masunari, A., & Tavares, L. C. (2007). A new class of nifuroxazide analogues: synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry, 15(12), 4229-4236. https://doi.org/10.1016/j.bmc.2007.03.068
Mauger, C., & Mignani, G. (2005). The Synthesis of Important Pharmaceutical Building Blocks by Palladium‐Catalyzed Coupling Reaction: Access to Various Arylhydrazines. Advanced Synthesis and Catalysis, 347(6), 773-782. https://doi.org/10.1002/adsc.200404392
Mlostoń, G., Urbaniak, K., Utecht, G., Lentz, D., & Jasiński, M. (2016). Trifluoromethylated 2, 3-dihydro-1, 3, 4-thiadiazoles via the regioselective [3+ 2]-cycloadditions of fluorinated nitrile imines with aryl, hetaryl, and ferrocenyl thioketones. Journal of Fluorine Chemistry, 192(A), 147-154. https://doi.org/10.1016/j.jfluchem.2016.10.018
Narang, R., Narasimhan, B., & Sharma, S. (2012). A review on biological activities and chemical synthesis of hydrazide derivatives. Current Medicinal Chemistry, 19(4), 569-612. https://doi.org/10.2174/092986712798918789
Nenajdenko, V. G., Shastin, A. V., Gorbachev, V. M., Shorunov, S. V., Muzalevskiy, V. M., Lukianova, A. I., Dorovatovskii, P. V., & Khrustalev, V. N. (2017). Copper-Catalyzed Transformation of Hydrazones into Halogenated Azabutadienes, Versatile Building Blocks for Organic Synthesis. ACS Catalysis, 7(1), 205-209. https://doi.org/10.1021/acscatal.6b03196
Nenajdenko, V. G., Kazakova, A. A., Novikov, A. S., Shikhaliyev, N. G., Maharramov, A. M., Qajar, A. M., Atakishiyeva, G. T., Niyazova, A. A., Khrustalev, V. N., Shastin, A. V., & Tskhovrebov, A. G. (2023). Copper-Catalyzed Reaction of N-Monosubstituted Hydrazones with CBr4: Unexpected Fragmentation and Mechanistic Study. Catalysts, 13(8), 1194. https://doi.org/10.3390/catal13081194
Pastewska, M., Bednarczyk-Cwynar, B., Kovačević, S., Buławska, N., Ulenberg, S., Georgiev, P., Kapica, H., Kawczak, P., Bączek, T., Sawicki, W., & Ciura, K. (2021). Multivariate assessment of anticancer oleanane triterpenoids lipophilicity. Journal of Chromatography A, 1656, 462552. https://doi.org/10.1016/j.chroma.2021.462552
Pérez-Nueno, V. I., Venkatraman, V., Mavridis, L., & Ritchie, D. W. (2012). Detecting drug promiscuity using Gaussian ensemble screening. Journal of Chemical Information and Modeling, 52(8), 1948-1961. https://doi.org/10.1021/ci3000979
Raue, R., Brack, A., & Lange, K. H. (1991). Salt‐free Synthesis of Azo and Hydrazone Dyes Under CO2 Pressure. Angewandte Chemie International Edition in English, 30(12), 1643-1644. https://doi.org/10.1002/anie.199116431
Rollas, S., & Gí¼niz Kí¼çí¼kgí¼zel, Åž. (2007). Biological activities of hydrazone derivatives. Molecules, 12(8), 1910-1939.
Sastry, G. M., Dixon, S. L., & Sherman, W. (2011). Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. Journal of Chemical Information and Modeling, 51(10), 2455-2466. https://doi.org/10.1021/ci2002704
Savini, L., Chiasserini, L., Travagli, V., Pellerano, C., Novellino, E., Cosentino, S., & Pisano, M. B. (2004). New α-(N)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. European Journal of Medicinal Chemistry, 39(2), 113-122. https://doi.org/10.1016/j.ejmech.2003.09.012
Tan, X. J., Wang, D., Lei, X. G., & Chen, J. P. (2018). Theoretical insight into the disordered structure of (Z)-2-[(E)-(4-methoxybenzylidene) hydrazinylidene]-1, 2-diphenylethanone: the role of noncovalent interactions. Acta Crystallographica Section C: Structural Chemistry, 74(9), 1058-1067. https://doi.org/10.1107/S2053229618009762
Vicini, P., Incerti, M., La Colla, P., & Loddo, R. (2009). Anti-HIV evaluation of benzo [d] isothiazole hydrazones. European Journal of Medicinal Chemistry, 44(4), 1801-1807. https://doi.org/10.1016/j.ejmech.2008.05.030
Vicini, P., Zani, F., Cozzini, P., & Doytchinova, I. (2002). Hydrazones of 1, 2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry, 37(7), 553-564. https://doi.org/10.1016/S0223-5234(02)01378-8
Willett, P. (2011). Similarity searching using 2D structural fingerprints. Chemoinformatics and Computational Chemical Biology, 133-158. https://doi.org/10.1007/978-1-60761-839-3_5

Downloads

Published

2025-03-25

How to Cite

Atakishiyeva, G. T. ., Qajar, A. M. ., Babayeva, G. V. ., Zeynalli, N. R. ., Ahmadova, N. E. ., & Shikhaliyev, N. Q. . (2025). Potential biological targets prediction and adme profiling of methyl group containing phenyl hydrazones . Acta Scientiarum. Technology, 47(1), e70639. https://doi.org/10.4025/actascitechnol.v47i1.70639

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus