Numerical analysis of the failure mode of reinforced concrete beams with glass fiber reinforced polymer bars
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70816Keywords:
Finite element method; GFRP bars; numerical simulation; rupture mode.Abstract
The durability of reinforced concrete structures can vary significantly depending on their specific application. One of the elements that has a negative impact on this durability is the corrosion of steel bars. In this context, several studies have been conducted with the aim of mitigating the incidence of this phenomenon, and such efforts include the replacement of conventional carbon steel bars with glass fiber reinforced polymer (GFRP) bars. The primary aim of this study is to analyze the impact of concrete properties on concrete beams reinforced with GFRP concerning bending stiffness and failure mode. To achieve this analysis, numerical simulations using the finite element method were carried out using the educational version of the Abaqus software. The most significant results of this investigation indicate that varying the αE parameter, parameter depending on the type of aggregate used according to NBR 6118 (2014), for beams using steel as the reinforcement material is more advantageous in terms of increasing load capacity, when compared to varying the fck. However, the opposite behavior was observed in the beams using GFRP as the reinforcing material. In addition, it can be seen that the failure mode presented significant changes when the steel reinforcement is partially replaced by GFRP, due to the brittle nature inherent in the material.
Downloads
References
Alves, G. F. T., Amaral, V. G. H., Jardim, P. I. L., & Almeida, D. H. (2024). Análise numérica da influência do módulo de elasticidade do concreto na rigidez de vigas de concreto armado com barras de GFRP. Revista de Engenharia e Tecnologia, 16(1), 1-9.
American Concrete Institute [ACI]. (2015). ACI 440.1R: Guide for the design and construction of structural concrete reinforced with firber-reinforced polymer (FRP) bars.
Associação Brasileira De Normas Técnicas [ABNT]. (2013). NBR 15575: Edificações habitacionais — Desempenho Parte 1: Requisitos gerais.
Associação Brasileira De Normas Técnicas [ABNT]. (2014). NBR 6118: Projeto de estruturas de concreto - procedimento.
Associação Brasileira De Normas Técnicas [ABNT]. (2023). NBR 6118: Projeto de estruturas de concreto - procedimento.
Chattopadhyay, S., Rajkumar, R., & Umamaheswari, N. (2018). Analytical investigation on flexural behavior of concrete beams reinforced with gfrp rebars. International Journal of Civil Engineering and Technology, 9(4), 1-8.
Dalfré, G. M., Mazzú, A. D. E., & Ferreira, F. G. S. (2021). Discussões sobre o dimensionamento de vigas de concreto armadas í flexão com barras de GFRP. Concreto and Construções, XLVIII, 79-86. https://doi.org/10.4322/1809-7197.2021.101.0008.
Dassault Systí¨mes Simulia. (2012). Abaqus 6.12 analysis user´s manual: Prescribed conditions, constraints and interactions. Abaqus 6.12, 5, 831.
Del Savio, A. A., Esquivel, D. L. T., Silva, F. A., & Pastor, J. A. (2023). Influence of Synthetic Fibers on the Flexural Properties of Concrete: Prediction of Toughness as a Function of Volume, Slenderness Ratio and Elastic Modulus of Fibers. Polymers, 15(4), 909. https://doi.org/10.3390/polym15040909
Departamento Nacional De Infra-Estrutura De Transportes [DNIT]. Diretoria Executiva. Instituto De Pesquisas Rodoviárias. (2010). Manual de recuperação de pontes e viadutos rodoviários.
Gemi, L., Madenci, E., & í–zkiliç, Y. O. (2021). Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete. Engineering Structures, 244. https://doi.org/10.1016/j.engstruct.2021.112790
Guo, Z. (2014). Principles of reinforced concrete construction. Elsevier.
Ineia, A., Pol, W. D. O., Braun, J. C. A., & Lopes Junior, L. S. (2021). Barras de fibra de vidro, uma alternativa inovadora e suas potencialidades: revisão bibliográfica. Tecno-Lógica, 25(2), 243-251. https://doi.org/10.17058/tecnolog.v25i2.16214
Ji, J., Zhang, R., Yu, C., He, L., Ren, H., & Jiang, L. (2021). Flexural Behavior of Simply Supported Beams Consisting of Gradient Concrete and GFRP Bars. Frontiers in Materials, 8. https://doi.org/10.3389/fmats.2021.693905
Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
Pinheiro, L. C. L., Real, M. & Magalhães, F. (2020). Comportamento do índice de confiabilidade de pilares de concreto armado em função do tempo de carregamento. Revista Mundi Engenharia, Tecnologia e Gestão, 5(8). https://doi.org/10.21575/25254782rmetg2020vol5n81382
Raza, A., Khan, Q. U. Z., & Ahmad, A. (2019). Numerical investigation of load-carrying capacity of GFRPreinforced rectangular concrete members using CDP model in abaqus. Advances in Civil Engineering.
Ribeiro, D. V., Sales, A., Tutikian, B. F., Souza, C. A. C. De, Almeida, F. Do C. R., Cunha, M. P. T., Lourenço, M. Z., Cascudo, O., & Helene, P. (2018). Corrosão e degradação em estruturas de concreto: teoria controle e técnicas de análise e intervenção. Elsevier.
Silva, L. M., Christoforo, A. L., & Carvalho, R. C. (2021). Calibration of Concrete Damaged Plasticity Model parameters for shear walls. Revista Matéria, 26(1). https://doi.org/10.1590/S1517-707620210001.1244
Spozito, R. S., Rodrigues, E. F. C., Santos, H. F. dos, Oliveira, I. A., Christoforo, A. L., Almeida Filho, F. M., & Delalibera, R. G. (2024). Numerical Modeling of Four-Pile Caps Using the Concrete Damaged Plasticity Model. Buildings, 14(7), 2066. https://doi.org/10.3390/buildings14072066
Srihari, P., Premalatha, J., & Vengadeshwari, R. S. (2017). Finite element modeling and analysis of RC beams with GFRP and steel bars. International Journal of Civil Engineering and Technology, 8(9), 671 - 679.
Sun, Y., Liu, Y., Wu, T., Liu, X., & Lu, H. (2019). Numerical analysis on flexural behavior of steel fiber-reinforced LWAC beams reinforced with GFRP bars. Applied Sciences (Switzerland), 9(23). https://doi.org/10.3390/app9235128
Swolfs, Y., Verpoest, I., & Gorbatikh, L. (2016). Tensile failure of hybrid composites: measuring, predicting and understanding. IOP Conference Series: Materials Science and Engineering, 139. https://doi.org/10.1088/1757-899X/139/1/012008
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.
