A simplified analytical modeling approach for the structural analysis of massive masonry structures
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70881Keywords:
Analytical model; finite element analysis; mardin; masonry structures; structural behavior.Abstract
This paper, presents a simplified analytical modeling approach to determine the structural behavior of historical buildings. Analytical modeling is a digital tool for determining the behavior of masonry buildings under the influence of dynamic and static loads. In the analytical modeling process, different types of elements are involved to represent buildings. Due to the complex geometrical features of historical buildings, it is significant to the preference for convenient elements. Mardin Great Mosque was discussed and analyzed for the selection of convenient element preferences. Three different mosque models were built and analyzed by using three different element types (frame, shell, solid). In the findings of the paper, the values at the same points on the models were compared. When the first natural vibration period was examined, the first model is 0.76sec, the second model is 0.76sec, and the third model is 0.71sec. In addition, considering the base shear under dead load, 98.35% similarity was observed. As a consequence of the geometrical features of historical buildings, inappropriate definitions and inconvenient element preferences emerge the results questionable. Therefore, to be able to manage the analytical modeling process effectively requires accurate and appropriate definitions of the elements to be preferred.
Downloads
References
Alfano, G., Rosati, L., & Valoroso, N. (2000). A numerical strategy for finite element analysis of no tension materials. International Journal for Numerical Methods in Engineering, 48(3), 317-350. https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<317::AID-NME868>3.0.CO;2-C
Altun, A. (1971). Mardin'de Tí¼rk Devri Mimarisi (Turkish Era Architecture in Mardin). Gí¼n Publishing.
Altun, A. (1978). Anadolu'da Artuklu devri Tí¼rk mimarisi'nin geliÅŸmesi (Development of Turkish architecture of the Artuqid period in Anatolia). Republic of Tí¼rkiye Ministry of Culture and Tourism.
Altunışık, A. C., Bayraktar, A., & Genç, A. F. (2016). A study on seismic behaviour of masonry mosques after restoration. Earthquakes and Structures, 10(6), 1331-1346. https://doi.org/10.12989/eas.2016.10.6.1331
Arias, P., Herraez, J., Lorenzo, H., & Ordonez, C. (2005). Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods. Computers & Structures, 83(21-22), 1754-1766. https://doi.org/10.1016/j.compstruc.2005.02.018
Armstrong, C. G. (1994). Modelling requirements for finite-element analysis. Computer-aided Design, 26(7), 573-578. https://doi.org/10.1016/0010-4485(94)90088-4
Augusti, G., Ciampoli, M., & Giovenale, P. (2001). Seismic vulnerability of monumental buildings. Structural Safety, 23(3), 253-274. https://doi.org/10.1016/S0167-4730(01)00018-2
Bedate, A., Herrero, L. C., & Sanz, J. Í. (2004). Economic valuation of the cultural heritage: application to four case studies in Spain. Journal of Cultural Heritage, 5(1), 101-111. https://doi.org/10.1016/j.culher.2003.04.002
Bekar, İ., Kutlu, I., & Ergí¼n, R. (2023). Importance performance analysis for sustainability of reused historical building: Mardin Sabanci City Museum and art gallery. Open House International, 49(3). https://doi.org/10.1108/OHI-04-2023-0080
Bernardeschi, K., Padovani, C., & Pasquinelli, G. (2004). Numerical modelling of the structural behaviour of Buti´s bell tower. Journal of Cultural Heritage, 5(4), 371-378. https://doi.org/10.1016/j.culher.2004.01.004
Betti, M., & Vignoli, A. (2008). Assessment of seismic resistance of a basilica-type church under earthquake loading: Modelling and analysis. Advances in Engineering Software, 39(4), 258-283. https://doi.org/10.1016/j.advengsoft.2007.01.004
Betti, M., & Vignoli, A. (2011). Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all´Impruneta (Italy). Construction and Building Materials, 25(12), 4308-4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028
Betti, M., & Galano, L. (2012). Seismic analysis of historic masonry buildings: the vicarious palace in Pescia (Italy). Buildings, 2(2), 63-82. https://doi.org/10.3390/buildings2020063
Bilgin, H. (2006). Mimar Sinan yapılarında kubbeli í¶rtí¼ sistemlerinin yapısal analizi (Structural Analysis of Domed Roof Systems in Architect Sinan´s Works). Selcuk University Journal of Engineering, Science and Technology, 21(3-4), 119-128.
Brencich, A., & Sabia, D. (2008). Experimental identification of a multi-span masonry bridge: The Tanaro Bridge. Construction and Building Materials, 22(10), 2087-2099. https://doi.org/10.1016/j.conbuildmat.2007.07.031
Can, H., Kubın, J., & íœnay, A. İ. (2012). Dí¼zensiz geometrik ÅŸekile sahip tarihi yığma binaların sismik davranışı (Seismic behavior of historical masonry buildings with irregular geometry). Journal of the Faculty of Engineering and Architecture of Gazi University, 27(3), 679-686.
Casarin, F., & Modena, C. (2008). Seismic assessment of complex historical buildings: application to Reggio Emilia Cathedral, Italy. International Journal of Architectural Heritage, 2(3), 304-327. https://doi.org/10.1080/15583050802063659
Cordoví, Y. C. S., Deulofeu, E. R. Í., Quintana, I. V., Téllez, M. C., & Nuñez, R. P. (2024). Seismic behavior of large concrete panel prefabricated structures in relation to structural joints. Acta Scientiarum. Technology, 46(1). https://doi.org/10.4025/actascitechnol.v46i1.64476
ÇaÄŸlayan, M. (2017). Mardin ortaçaÄŸ anıtları ve yapım teknikleri (Mardin Medieval Monuments and Construction Techniques). Hiperlink Publishing.
ÇaÄŸlayan, M. (2018). OrtaçaÄŸ´dan gí¼ní¼mí¼ze bir anıt: Mardin Ulu Camii (A monument from medieval to present: Mardin Ulu Cami - Grand Mosque). Restorasyon ve Konservasyon Çalışmaları Dergisi, 1(21), 29-40.
ÇarhoÄŸlu, A. İ., Zabin, P., & Korkmaz, K. A. (2014). Kars Kí¼mbet Camisinin deprem davranışının incelenmesi (Investigation of earthquake behaviour of Kars Kí¼mbet Mosque). Gazi University Journal of Science Part C: Design and Technology, 2(1), 189-196.
D´Ayala, D., & Smars, P. (2003). Minimum requirement for metric use of non-metric photographic documentation, University of Bath Report. https://www.researchgate.net/publication/321758681_Minimum_requirement_for_metric_use_of_non-metric_photographic_documentation_Report_for_English_Heritage (Available at 25.12.2023)
Erdal, Z. (2017). Mardin Ulu Cami í¼zerine yeni gí¶rí¼ÅŸler (New opinions on the Great Mosque of Mardin). The Journal of Social Sciences Institute, 17(2), 433-447.
Gí¼ncí¼, A., Soyluk, A., Çelik, A., & Mutlu, E. O. (2024). Investigation of the Earthquake Behavior of Historical Erzincan Çadırcı Bath and the Reasons for Its Persistence Until Today. Politeknik Dergisi, 27(6) 2069-2078. https://doi.org/10.2339/politeknik.1407217
Halaç, H. H., & í–ÄŸí¼lmí¼ÅŸ, V. (2021). Kí¼ltí¼rel Miras Verilerinin Dijital Olarak Depolanması: Openheritage3d í–rneÄŸi (Digital Storage Of Cultural Heritage Data: Openheritage3d Example). Turkish Online Journal of Design Art and Communication, 11(2), 521-540.
Hutton, D. V. (2003). Fundamentals of finite element analysis. McGraw-Hill Education.
İlerisoy, Z. Y., & Soyluk, A. (2013). Dynamic analysis of Dolmabahce masonary clock tower. Gradevinar, 65(4), 345-352. https://doi.org/10.14256/JCE.885.2012
Karaton, M., Aksoy, H. S., Sayın, E., & Calayır, Y. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79, 408-421. https://doi.org/10.1016/j.engfailanal.2017.05.017
Korkmaz, K. A., Zabin, P., ÇarhoÄŸlu, A. İ., & NuhoÄŸlu, A. (2014). Rize Merkez KurÅŸunlu Camisi´nin deprem davranışının incelenmesi (Investigation of seismic behavior of Rize Kursunlu Mosque). Sakarya University Journal of Science, 18(3), 149-156.
Korumaz, A. G., Dí¼lgerler, O. N., & Yakar, M. (2011). Kí¼ltí¼rel mirasın belgelenmesinde dijital yaklaşımlar (Digital techniques in cultural heritage documentation). Selcuk University Journal of Engineering, Science and Technology, 26(3), 67-83.
Kuban, D. (2000). Tarihi çevre koruma ve onarımın mimarlık boyutu kuram ve uygulama (Architectural aspects of historical heritage conservation and restoration theory and practice). YEM Publishing.
Kutlu, I., & Soyluk, A. (2024). A comparative approach to using photogrammetry in the structural analysis of historical buildings. Ain Shams Engineering Journal, 15(1), 102298. https://doi.org/10.1016/j.asej.2023.102298
Kí¼çí¼kdoÄŸan, B., Kubin, J., & íœnay, A. İ. (2010). Seismic assessment of monastery of stoudios (Imrahor Mosque) in İstanbul. In Advanced Materials Research, 133-134, 721-726. https://doi.org/10.4028/www.scientific.net/AMR.133-134.721
Lourenço, P. B. (2001). Analysis of historical constructions: from thrust-lines to advanced simulations. Historical Constructions, 91-116.
Lourenço, P. B. (2002). Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3), 301-319. https://doi.org/10.1002/pse.120
Lucchesi, M., Padovani, C., & Pagni. A. (1994). A numerical method for solving equilibrium problems of masonry-like solids. Meccanica, 29(2), 175-193. https://doi.org/10.1007/BF01007500
Makineci, H. B., & Karasaka, L. (2021). Investigation of 3D models acquired with UAV oblique images. Turkish Journal of Geosciences, 2(2), 13-20. https://doi.org/10.48053/turkgeo.980559
Mele, E., & De Luca, A. (1999). Behaviour and modelling of masonry church buildings in seismic regions. WIT Transactions on The Built Environment.
Mele, E., De Luca, A., & Giordano, A. (2003). Modelling and analysis of a basilica under earthquake loading. Journal of Cultural Heritage, 4(4), 355-367. https://doi.org/10.1016/j.culher.2003.03.002
Motsa, S. M., Drosopoulos, G. A., Stavroulaki, M. E., Maravelakis, E., Borg, P. R., Galea, P., d´Amico, S., & Stavroulakis, G, E. (2020). Structural investigation of Mnajdra megalithic monument in Malta. Journal of Cultural Heritage, 41, 96-105. https://doi.org/10.1016/j.culher.2019.07.004
Peña, F., Lourenço, P. B., Mendes, N., & Oliveira, D. V. (2010). Numerical models for the seismic assessment of an old masonry tower. Engineering Structures, 32(5), 1466-1478. https://doi.org/10.1016/j.engstruct.2010.01.027
Pesci, A., Teza, G., Bonali, E., Casula, G., & Boschi, E. (2013). A laser scanning-based method for fast estimation of seismic-induced building deformations. ISPRS Journal of Photogrammetry and Remote Sensing, 79,185-198. https://doi.org/10.1016/j.isprsjprs.2013.02.021
Reyes, E., Casati, M. J., & Gálvez, J. C. (2008). Cohesive crack model for mixed mode fracture of brick masonry. International Journal of Fracture, 151(1), 29-55. https://doi.org/10.1007/s10704-008-9243-1
Sadeghi Movahhed, A., Shirkhani, A., Zardari, S., Noroozinejad Farsangi, E., & Karimi Pour, A. (2023). Effective range of base isolation design parameters to improve structural performance under far and near-fault earthquakes. Advances in Structural Engineering, 26(1), 52-71. https://doi.org/10.1177/13694332221119870
Selvaggi, I., Dellapasqua, M., Franci, F., Spangher, A., Visintini, D., & Bitelli, G. (2018). 3D comparison towards a comprehensive analysis of a building in cultural heritage. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(8), 1061-1066.
Stavroulaki, M. E., Drosopoulos, G. A., Tavlopoulou, E., Skoutelis, N., & Stavroulakis, G. E. (2018). Investigation of the structural behaviour of a masonry castle by considering the actual damage. International Journal of Masonry Research and Innovation, 3(1), 1-33. https://doi.org/10.1504/IJMRI.2018.089046
Szabó, B., & BabuÅ¡ka, I. (2021). Finite Element Analysis: Method, Verification and Validation. John Wiley & Sons, Inc.
Åžeker, S., & Sahin, H. (2023). Numerical Investigation of A Historic Masonry Minaret Subjected To Seismic Excitation. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48, 2249-2262. https://doi.org/10.1007/s40996-023-01285-6
ÅžimÅŸek, D., & Işıker, F. (2024). Bir Erken Cumhuriyet Dí¶nemi Yapısı: İzzetpaÅŸa Karakolu ve Dijital Belgeleme Sí¼reci (An Early Republican Period Building: Izzetpasa Gendarmery Station and Digital Documentation Process). Modular Journal, 7(1-2), 11-29. https://doi.org/10.59389/modular.1587780
Tsutsumoto, N. Y., Fazzan, J. V., Melges, J. L. P., Fioriti, C. F., Tashima, M. M., & Akasaki, J. L. (2019). Structural behavior of reinforced concrete beams strengthened with bamboo splints. Acta Scientiarum. Technology, 41, e36989. https://doi.org/10.4025/actascitechnol.v41i1.36989
Tí¼rer, A., AktaÅŸ Erdem, Y. D., & Gí¼çhan, N. Åž. (2012). Reverse-engineering evaluation and monitoring of Nemrut monuments. International Journal of Architectural Heritage, 6(4), 373-395. https://doi.org/10.1080/15583058.2011.561906
íœnay, A. İ. (2002). Tarihi yapıların depreme dayanımı (Earthquake behaviour of historical buildings). ODTíœ Publishing.
Wait, R., & Mitchell, A. R. (1985). Finite element analysis and applications. John Wiley and Sons Incorporated.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). Structure-from-Motion´photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
Yilmaz, H. M., Yakar, M., Gulec, S. A., & Dulgerler, O. N. (2007). Importance of digital close-range photogrammetry in documentation of cultural heritage. Journal of Cultural Heritage, 8(4), 428-433. https://doi.org/10.1016/j.culher.2007.07.004
Zhao, D., Liu, C., Zhang, X., Zhai, X., Deng, Y., Chen, H., Hu, J., Liu, D., & Luo, P. (2023). 3D Digital Modeling as a Sustainable Conservation and Revitalization Path for the Cultural Heritage of Han Dynasty Stone Reliefs. Sustainability, 15(16), 12487. https://doi.org/10.3390/su151612487
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.
