The Antifungal profiling of Brazilian essential oils: Chemotype classification and correlation with bioactivity

Authors

  • Matteo Henrique Sartore Universidade de São Paulo
  • Leticia Rodrigues Barrozo Lopes Universidade de São Paulo
  • Marcelo José Pena Ferreira Universidade de São Paulo
  • Cristina de Castro Spadari Universidade de São Paulo
  • Kelly Ishida Universidade de São Paulo
  • Marcelo Marucci Pereira Tangerina Universidade de São Paulo
  • Eutimio Gustavo Fernández Núñez Universidade de São Paulo
  • Miriam Sannomiya Universidade de São Paulo

Keywords:

CG-MS, chemotypes, essential oil, Melaleuca alternifolia, multivariate data analysis, antifungal activity

Abstract

Seven Brazilian commercial samples of tea tree oil (TTO) from Melaleuca alternifolia were analyzed from the chemical perspective to identify their chemotypes, and their efficacy against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus by the broth microdilution method was also explored. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares (PLS) were performed to identify similarities and differences among the samples and their correlation with the antifungal activity. According to the chemical composition, 86 % of the samples analyzed are classified as chemotype I, and one of them can suggest an essential oil adulterated with Eucalyptus species. PCA and HCA demonstrated that the TTO samples should be divided into three groups and the major compounds in each group were identified. According to PLS analysis, two samples showed the most antifungal activities against C. albicans and C. neoformans most likely related to the content of 1,8-cineole and p-cymene as an enhancer and an inhibitor, respectively.

Downloads

Download data is not yet available.

References

Alves, M., Gonçalves, M. J., Zuzarte, M., Alves-Silva, J. M., Cavaleiro, C., Cruz, M. T., & Salgueiro, L. (2019). Unveiling the antifungal potential of two Iberian Thyme essential oils: Effect on C. albicans germ tube and preformed biofilms. Frontiers in Pharmacology, 10, 446. https://doi.org/10.3389/fphar.2019.00446

Berechet, M. D., Chiril?, C., Simion, D., Niculescu, O., Stanca, M., Alexe, C.-A., & Gur?u, D. F. (2020). Antifungal activity of leather treated with Anethum graveolens and Melaleuca alternifolia essential oils against Trichophyton interdigitale. Leather and Footwear Journal, 20(2), 133–144. https://doi.org/10.24264/lfj.20.2.4

Borotová, P., Galovi?ová, L., Vukovic, N. L., Vukic, M., Tvrdá, E., & Ka?ániová, M. (2022). Chemical and biological characterization of Melaleuca alternifolia essential oil. Plants, 11(4), 558. https://doi.org/10.3390/plants11040558

BinShabaib, M. S., Alharthi, S. S., Helaby, B. S., AlHefdhi, M. H., Mohammed, A. E., & Aabed, K. (2022). Comparison of the anti-bacterial efficacy of Saussurea costus and Melaleuca alternifolia against Porphyromonas gingivalis, Streptococcus mutans, and Enterococcus faecalis: An in-vitro study. Frontiers in Oral Health, 3, 950840. https://doi.org/10.3389/froh.2022.950840

Capetti, F., Sgorbini, B., Cagliero, C., Argenziano, M., Cavalli, R., Milano, L., Bicchi, C., & Rubiolo, P. (2020). Melaleuca alternifolia essential oil: Evaluation of skin permeation and distribution from topical formulations with a solvent-free analytical method. Planta Medica, 86(6), 442–450. https://doi.org/10.1055/a-1115-4848

Ergun, S. B., Saribas, G. S., Yarayici, S., Elmazoglu, Z., Cardak, A., Ozogul, C., Ilhan, M., N., Karasu, C., & Kemer, O. E. (2020). Comparison of efficacy and safety of two tea tree oil-based formulations in patients with chronic blepharitis: A double-blinded randomized clinical trial. Ocular Immunology and Inflammation, 28(6), 888–897. https://doi.org/10.1080/09273948.2019.1644349

Francisconi, R. S., Huacho, P. M. M., Tonon, C. C., Bordini, E. A. F., Correia, M. F., Sardi, J. de C. O., & Spolidorio, D. M. P. (2020). Antibiofilm efficacy of tea tree oil and of its main component terpinen-4-ol against Candida albicans. Brazilian Oral Research, 34, e050. https://doi.org/10.1590/1807-3107bor-2020.vol34.0050

Haines, R. R., Putsathit, P., Tai, A. S., & Hammer, K. A. (2022). Antimicrobial effects of Melaleuca alternifolia (tea tree) essential oil against biofilm-forming multidrug-resistant cystic fibrosis-associated Pseudomonas aeruginosa as a single agent and in combination with commonly nebulized antibiotics. Letters in Applied Microbiology, 75(3), 578–587. https://doi.org/10.1111/lam.13589

Johnson, J. B., Thani, P. R., Mani, J. S., Cozzolino, D., & Naiker, M. (2022). Mid-infrared spectroscopy for the rapid quantification of eucalyptus oil adulteration in Australian tea tree oil (Melaleuca alternifolia). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 283, 121766. https://doi.org/10.1016/j.saa.2022.121766

Kairey, L., Agnew, T., Bowles, E. J., Barkla, B. J., Wardle, J., & Lauche, R. (2023). Efficacy and safety of Melaleuca alternifolia (tea tree) oil for human health—A systematic review of randomized controlled trials. Frontiers in Pharmacology, 14, 1116077. https://doi.org/10.3389/fphar.2023.1116077

Kokoska, L., Kloucek, P., Leuner, O., & Novy, P. (2019). Plant-derived products as antibacterial and antifungal agents in human health care. Current Medicinal Chemistry, 26(29), 5501–5541. https://doi.org/10.2174/0929867325666180831144344

Lee, S.-Y., Chen, P.-Y., Lin, J.-C., Kirkby, N. S., Ou, C.-H., & Chang, T.-C. (2017). Melaleuca alternifolia induces heme oxygenase-1 expression in murine RAW264.7 cells through activation of the Nrf2-ARE pathway. The American Journal of Chinese Medicine, 45(8), 1631–1648. https://doi.org/10.1142/S0192415X17500884

Martoni, F., & Blacket, M. J. (2021). Description of an Australian endemic species of Trioza (Hemiptera: Triozidae) pest of the endemic tea tree, Melaleuca alternifolia (Myrtaceae). PLOS ONE, 16(9), e0257031. https://doi.org/10.1371/journal.pone.0257031

Mertas, A., Garbusi?ska, A., Szliszka, E., Jureczko, A., Kowalska, M., & Król, W. (2015). The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains. BioMed Research International, 2015, 590470. https://doi.org/10.1155/2015/590470

Oliveira, A. F. M., Silva, F. L., Silva, R. T., Morais, F. M., Santos, R. R. L., Silva, L. L. W. V., & Morais, C. C. (2022). Atividade antifúngica de óleos essenciais frente a cepa de Candida albicans. Research, Society and Development, 11(14), e04111435696. https://doi.org/10.33448/rsd-v11i14.35696

Roana, J., Mandras, N., Scalas, D., Campagna, P., & Tullio, V. (2021). Antifungal activity of Melaleuca alternifolia essential oil (TTO) and its synergy with itraconazole or ketoconazole against Trichophyton rubrum. Molecules, 26(2), 461. https://doi.org/10.3390/molecules26020461

Simsek, M., & Duman, R. (2017). Investigation of effect of 1,8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacognosy Research, 9(3), 234–238. https://doi.org/10.4103/0974-8490.210329

Souza, M. E., Lopes, L. Q. S., Bonez, P. C., Gündel, A., Martinez, D. S. T., Sagrillo, M. R., ... Santos, R. C. V. (2017). Melaleuca alternifolia nanoparticles against Candida species biofilms. Microbial Pathogenesis, 104, 125–132. https://doi.org/10.1016/j.micpath.2017.01.023

Tarach, I., Olewnik-Kruszkowska, E., Richert, A., Gierszewska, M., & Rudawska, A. (2020). Influence of tea tree essential oil and poly(ethylene glycol) on antibacterial and physicochemical properties of polylactide-based films. Materials, 13(21), 4953. https://doi.org/10.3390/ma13214953

Zibetti, F. W., Pilau Sobrinho, L. L., & Garcia, M. L. (2018). A obrigatoriedade das normas técnicas internacionais no âmbito do sistema multilateral de comércio. Seqüência: Estudos Jurídicos e Políticos, 39(79), 169–194. https://doi.org/10.5007/2177-7055.2018v39n79p169

Downloads

Published

2025-06-17

How to Cite

Sartore, M. H. ., Lopes, L. R. B. ., Ferreira, M. J. P. ., Spadari, C. de C. ., Ishida, K. ., Tangerina, M. M. P. ., Fernández Núñez, E. G. ., & Sannomiya, M. . (2025). The Antifungal profiling of Brazilian essential oils: Chemotype classification and correlation with bioactivity. Acta Scientiarum. Technology, 47(1), e71290. Retrieved from https://periodicos.uem.br/actascitechnol/index.php/ActaSciTechnol/article/view/71290