Improvement of some nutritional properties, phenolic compound amounts and antioxidant enzyme levels of garden cress (Lepidium sativum L.) grown with controlled salinity stress application

Authors

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.73480

Keywords:

Garden cress; abiotic stress; salinity; antioxidant enzymes; phenolic compounds; anthocyanins

Abstract

The present study subjected two distinct cultivars of cress (Dada? and Bahar) to salinity treatment (0, 30, and 60 mM) to determine its effect on the properties of the cress cultivars. The Dada? cress cultivar exhibited higher levels of antioxidant enzymes, phenolic compounds, anthocyanins, vitamins, and amino acids compared to the Bahar cress cultivar (P ? 0.01). However, Bahar cress had a higher content of sucrose, fructose, and galactose compared to Dada? cress. The salinity treatment resulted in a marked increase in the levels of antioxidant enzymes in both cultivars of cress. Moreover, the Catalase (CAT) activity in Dada? and Bahar cress rose significantly from 12.89 to 22.45 and from 6.71 to 17.33, while the Peroxidase (POD) activity increased from 14.01 to 25.87 and from 8.95 to 18.57 (EU/g plant), respectively. Additionally, histidine levels in both cress cultivars increased under the 60 mM salinity treatment. Although the sugar content of cress cultivars increased with salinity application, interestingly, the 30 mM salinity treatment caused a decrease in the level of fructose. An increase in the levels of individual phenolic compounds was observed depending on the concentration of the salinity treatment, while a decrease in the amount of anthocyanins was noted. Finally, this research indicates that the application of salinity, an abiotic stress factor, influences the nutritional and functional compounds of cress cultivars, with salt concentration playing a significant role.

Downloads

Download data is not yet available.

References

Al-Sammarraie, O. N., Alsharafa, K. Y., Al-Limoun, M. O., Khleifat, K. M., Al-Sarayreh, S. A., Al-Shuneigat, J. M., & Kalaji, H. M. (2020). Effect of various abiotic stressors on some biochemical indices of Lepidium sativum plants. Scientific Reports, 10(1), 21131. https://doi.org/10.1038/s41598-020-78330-1

Atkinson, N. J., Dew, T. P., Orfila, C., & Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59(17), 9673-9682. https://doi.org/10.1021/jf202081t

Benitez, L. C., Vighi, I. L., Auler, P. A., do Amaral, M. N., Moraes, G. P., dos Santos Rodrigues, G., & Braga, E. J. B. (2016). Correlation of proline content and gene expression involved in the metabolism of this amino acid under abiotic stress. Acta Physiologiae Plantarum, 38, 1–12. https://doi.org/10.1007/s11738-016-2291-7

Botella, M. Á., Hernández, V., Mestre, T., Hellín, P., García-Legaz, M. F., Rivero, R. M., & Flores, P. (2021). Bioactive compounds of tomato fruit in response to salinity, heat and their combination. Agriculture, 11(6), 534. https://doi.org/10.3390/agriculture11060534

Conforti, F., Sosa, S., Marrelli, M., Menichini, F., Statti, G. A., Uzunov, D., & Menichini, F. (2009). The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chemistry, 112(3), 587–594. https://doi.org/10.1016/j.foodchem.2008.06.013

Elguera, J. C. T., Barrientos, E. Y., Wrobel, K., & Wrobel, K. (2013). Effect of cadmium (Cd (II)), selenium (Se (IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiologiae Plantarum, 35, 431–441. https://doi.org/10.1007/s11738-012-1086-8

Fang, Z.-Z., Lin-Wang, K., Zhou, D.-R., Lin, Y.-J., Jiang, C.-C., Pan, S.-L., & Ye, X.-F. (2021). Activation of PsMYB10.2 transcription causes anthocyanin accumulation in flesh of the red-fleshed mutant of ‘Sanyueli’ (Prunus salicina Lindl.). Frontiers in Plant Science, 1167. https://doi.org/10.3389/fpls.2021.680469

Farha, W., Abd El?Aty, A., Rahman, M. M., Jeong, J. H., Shin, H. C., Wang, J., & Shim, J. H. (2018). Analytical approach, dissipation pattern and risk assessment of pesticide residue in green leafy vegetables: A comprehensive review. Biomedical Chromatography, 32(1), e4134. https://doi.org/10.1002/bmc.4134

Geranpayeh, A., Azizpour, K., Vojodi Mehrabani, L., & Valizadeh Kamran, R. (2017). Effects of Salinity on Some Physiological Characteristics of Lepidium sativum L. Journal of Plant Physiology and Breeding, 7(2), 23–30.

González-Chavira, M. M., Herrera-Hernández, M. G., Guzmán-Maldonado, H., & Pons-Hernández, J. L. (2018). Controlled water deficit as abiotic stress factor for enhancing the phytochemical content and adding-value of crops. Scientia Horticulturae, 234, 354–360. https://doi.org/10.1016/j.scienta.2018.02.049

González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., & Juárez-Maldonado, A. (2021). Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 10(2), 217. https://doi.org/10.3390/plants10020217

Graziani, G., Cirillo, A., Giannini, P., Conti, S., El-Nakhel, C., Rouphael, Y., & Di Vaio, C. (2022). Biostimulants improve plant growth and bioactive compounds of young olive trees under abiotic stress conditions. Agriculture, 12(2), 227. https://doi.org/10.3390/agriculture12020227

Hassan, L., Hassan, S., Hashim, T., Umar, K., & Sani, N. (2011). Determination of nutritive values of garden cress (Lepidium Sativum L.) leaves. Bayero Journal of Pure and Applied Sciences, 4(2), 18–23. https://doi.org/10.4314/bajopas.v4i2.4

Hildebrandt, T. M. (2018). Synthesis versus degradation: Directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology, 98, 121–135. https://doi.org/10.1007/s11103-018-0767-0

Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post?genome era: Past, present and future. The Plant Journal, 61(6), 1041–1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x

Islam, M. Z., Park, B.-J., & Lee, Y.-T. (2019). Effect of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract under organic cultivation conditions. International Journal of Biological Macromolecules, 140, 631–636. https://doi.org/10.1016/j.ijbiomac.2019.08.090

Joseph, E., Radhakrishnan, V., & Mohanan, K. (2015). A study on the accumulation of proline-an osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala, India. Universal Journal of Agricultural Research, 3(1), 15–22. https://doi.org/10.13189/ujar.2015.030104

Karazhiyan, H., Razavi, S. M., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., & Farhoosh, R. (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloids, 23(8), 2062–2068. https://doi.org/10.1016/j.foodhyd.2009.03.019

Kaya, O., Ates, F., Kara, Z., Turan, M., & Gutiérrez-Gamboa, G. (2022). Study of Primary and Secondary Metabolites of Stenospermocarpic, Parthenocarpic and Seeded Raisin Varieties. Horticulturae, 8(11), 1030. https://doi.org/10.3390/horticulturae8111030

Keskin, N., Kaya, O., Ates, F., Turan, M., & Gutiérrez-Gamboa, G. (2022). Drying grapes after the application of different dipping solutions: effects on hormones, minerals, vitamins, and antioxidant enzymes in Gök Üzüm (Vitis vinifera L.) raisins. Plants, 11(4), 529. https://doi.org/10.3390/plants11040529

Manaa, A., Mimouni, H., Terras, A., Chebil, F., Wasti, S., Gharbi, E., & Ben Ahmed, H. (2014). Superoxide dismutase isozyme activity and antioxidant responses of hydroponically cultured Lepidium sativum L. to NaCl stress. Journal of Plant Interactions, 9(1), 440–449. https://doi.org/10.1080/17429145.2013.850596

Nikolidaki, E. K., Chiou, A., Christea, M., Gkegka, A. P., Karvelas, M., & Karathanos, V. T. (2017). Sun dried Corinthian currant (Vitis Vinifera L., var. Apyrena) simple sugar profile and macronutrient characterization. Food Chemistry, 221, 365–372. https://doi.org/10.1016/j.foodchem.2016.10.070

Patel, J., Khandwal, D., Choudhary, B., Ardeshana, D., Jha, R. K., Tanna, B., & Siddique, K. H. (2022). Differential physio-biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. International Journal of Molecular Sciences, 23(2), 660. https://doi.org/10.3390/ijms23020660

Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151. https://doi.org/10.3390/plants8060151

Rafi?ska, K., Pomastowski, P., Rudnicka, J., Krakowska, A., Maru?ka, A., Narkute, M., & Buszewski, B. (2019). Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chemistry, 289, 16–25. https://doi.org/10.1016/j.foodchem.2019.03.024

Rajput, V. D., Harish, Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., & Sushkova, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4), 267. https://doi.org/10.3390/biology10040267

Razmkhah, S., Razavi, S. M. A., Mohammadifar, M. A., Koocheki, A., & Ale, M. T. (2016). Stepwise extraction of Lepidium sativum seed gum: Physicochemical characterization and functional properties. International Journal of Biological Macromolecules, 88, 553–564. https://doi.org/10.1016/j.ijbiomac.2016.04.024

Sagdic, O., Ozturk, I., Ozkan, G., Yetim, H., Ekici, L., & Yilmaz, M. T. (2011). RP-HPLC–DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: Evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chemistry, 126(4), 1749–1758. https://doi.org/10.1016/j.foodchem.2010.12.075

Santos, J., Oliveira, M., Ibáñez, E., & Herrero, M. (2014). Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. Journal of Chromatography A, 1327, 118–131. https://doi.org/10.1016/j.chroma.2013.12.085

Sarker, U., Oba, S., Ercisli, S., Assouguem, A., Alotaibi, A., & Ullah, R. (2022). Bioactive phytochemicals and quenching activity of radicals in selected drought-resistant Amaranthus tricolor vegetable amaranth. Antioxidants, 11(3), 578. https://doi.org/10.3390/antiox11030578

Younos, M., & Akl, E. (2022). Evaluation of Enzymatic Phenolic Extract from Garden Cress Seed Meal against Aflatoxigenic Fungi Isolated from Eggplant fruits. Egyptian Journal of Chemistry, 65(4), 287–299. https://doi.org/10.21608/EJCHEM.2021.95601.4487

Downloads

Published

2025-09-01

How to Cite

Ekinci, M., Turan, M., Argin, S., Yildirim, E., Goktas, H., & Sagdic, O. (2025). Improvement of some nutritional properties, phenolic compound amounts and antioxidant enzyme levels of garden cress (Lepidium sativum L.) grown with controlled salinity stress application. Acta Scientiarum. Technology, 47(1), e73480. https://doi.org/10.4025/actascitechnol.v47i1.73480

Issue

Section

Science, Food Technology and Food Engineering

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus