Effects of process conditions on exopolysaccharide produced by Mesorhizobium sp. in whey permeate

Authors

DOI:

https://doi.org/10.4025/actascitechnol.v48i1.74391

Keywords:

Biopolymer; Diazotrophic bacteria; Experimental design.

Abstract

Exopolysaccharides (EPS) produced by diazotrophic bacteria are promising biomolecules with commercial potential; however, effects of cultivation conditions on their yield have remained underexplored. This study aimed to maximize EPS production by Mesorhizobium sp. SEMIA 816 in whey permeate (WP) as the carbon source. A Plackett–Burman (PB) design was applied to assess the impact of 12 variables, namely K?HPO?, KH?PO?, MgSO?·7H?O, NaCl, yeast extract (YE), MnCl?·4H?O, CaCl?·2H?O, WP, pH, medium-to-reactor volume ratio (VM:VR), agitation and temperature, on EPS and biomass concentrations. EPS production ranged from 0 to 9.28 g L-1; the WP concentration exerted the most positive influence. Biomass production ranged from 0.6 to 7.15 g L-1; YE exerted the greatest effect, although it was negatively correlated with EPS production. Maximum EPS concentration (9.28 g L-1) was achieved after 96 h under the central point conditions of the experimental design, whereas the highest biomass concentration (7.15 g L-1) was reached after 72 h under a different set of conditions. Agitation and temperature influenced both responses negatively, a fact that highlighted the need to control them precisely. This study provides insights into the maximization of EPS production since it shows the potential of WP as an effective carbon source and identifies key factors affecting both EPS and biomass yields.

Downloads

Download data is not yet available.

References

Alsafadi, D., Al?Mashaqbeh, O., Mansour, A., & Alsaad, M. (2020). Optimization of nitrogen source supply for enhanced biosynthesis and quality of poly(3?hydroxybutyrate?co?3?hydroxyvalerate) by extremely halophilic archaeon Haloferax mediterranei. MicrobiologyOpen, 9(8), e1055. https://doi.org/10.1002/mbo3.1055

American Dairy Products Institute. (2023). Dairy permeate (milk & whey) standard.

Association of Official Analytical Chemists. (2000). Official methods of analysis of AOAC International (17th ed.). AOAC International.

Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in Bioengineering and Biotechnology, 3, 200. https://doi.org/10.3389/fbioe.2015.00200

Barbosa, A. D. M., Cunha, P. D. T. da, Pigatto, M. M., & Silva, M. D. L. C. da. (2004). Produção e aplicações de exopolissacarídeos fúngicos. Semina: Ciências Exatas e Tecnológicas, 25(1), 29. https://doi.org/10.5433/1679-0375.2004v25n1p29

Barreto, M. C. S., Figueiredo, M. V. B., Burity, H. A., Silva, M. L. R. B., & Lima-Filho, J. L. (2011). Produção e comportamento reológico de biopolímeros produzidos por rizóbios e caracterização genética. Revista Brasileira Agrociência, 17(2–4), 221–227.

Biswas, J., & Paul, A. K. (2017). Optimization of factors influencing exopolysaccharide production by Halomonas xianhensis SUR308 under batch culture. AIMS Microbiology, 3(3), 564–579. https://doi.org/10.3934/microbiol.2017.3.564

Bomfeti, C. A., Florentino, L. A., Guimarães, A. P., Cardoso, P. G., Guerreiro, M. C., & Moreira, F. M. de S. (2011). Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. Revista Brasileira de Ciência Do Solo, 35(3), 657–671. https://doi.org/10.1590/S0100-06832011000300001

Castellane, T. C. L., Campanharo, J. C., Colnago, L. A., Coutinho, I. D., Lopes, É. M., Lemos, M. V. F., & de Macedo Lemos, E. G. (2017). Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. International Journal of Biological Macromolecules, 96, 361–369. https://doi.org/10.1016/j.ijbiomac.2016.11.123

Castellane, T. C. L., & Lemos, E. G. de M. (2007). Composição de exopolissacarídeos produzidos por estirpes de rizóbios cultivados em diferentes fontes de carbono. Pesquisa Agropecuária Brasileira, 42(10), 1503–1506. https://doi.org/10.1590/S0100-204X2007001000019

Devi, S. E., Vijayendra, S. V. N., & Shamala, T. R. (2012). Exploration of rice bran, an agro-industry residue, for the production of intra- and extra-cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatalysis and Agricultural Biotechnology, 1(1), 80–84. https://doi.org/10.1016/j.bcab.2011.08.014

Feng, X., Jiang, X., & Zhao, G. (2022). Editorial: Advances and trends in microbial production of biopolymers and their building blocks. Frontiers in Bioengineering and Biotechnology, 10, 1025797. https://doi.org/10.3389/fbioe.2022.10257971

Feng, Y.-L., Li, W.-Q., Wu, X.-Q., Cheng, J.-W., & Ma, S.-Y. (2010). Statistical optimization of media for mycelia2l growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49(1), 104–112. https://doi.org/10.1016/j.bej.2009.12.002

Flores-Félix, J. D., Velázquez, E., García-Fraile, P., González-Andrés, F., Silva, L. R., & Rivas, R. (2018). Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Research International, 111, 416–422. https://doi.org/10.1016/j.foodres.2018.05.059

Freitas, F., Alves, V. D., Pais, J., Carvalheira, M., Costa, N., Oliveira, R., & Reis, M. A. M. (2010). Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochemistry, 45(3), 297–305. https://doi.org/10.1016/j.procbio.2009.09.020

Freitas, F., Alves, V. D., & Reis, M. A. M. (2011). Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends in Biotechnology, 29(8), 388 398. https://doi.org/10.1016/j.tibtech.2011.03.008

Freitas, F., Torres, C. A. V., & Reis, M. A. M. (2017). Engineering aspects of microbial exopolysaccharide production. Bioresource Technology, 245(B), 1674–1683. https://doi.org/10.1016/j.biortech.2017.05.092

González, C. H. (2019). Produção de exopolissacarídeos por rizóbios em meios de cultivo com coprodutos lácteos [Dissertação de mestrado em Engenharia e Ciência de Alimentos]. Universidade Federal do Rio Grande.

Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10–27. https://doi.org/10.1016/j.ijbiomac.2016.09.104

Ipek, M., Pirlak, L., Esitken, A., Dönmez, M. F., Turan, M., & Sahin, F. (2014). Plant growth-promoting Rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. Journal of Plant Nutrition, 37(7), 990–1001. https://doi.org/10.1080/01904167.2014.881857

Iturralde, E. T., Stocco, M. C., Faura, A., Mónaco, C. I., Cordo, C., Pérez-Giménez, J., & Lodeiro, A. R. (2020). Coinoculation of soybean plants with Bradyrhizobium japonicum and Trichoderma harzianum: Coexistence of both microbes and relief of nitrate inhibition of nodulation. Biotechnology Reports, 26, e00461. https://doi.org/10.1016/j.btre.2020.e00461

Janczarek, M., Rachwa?, K., Marzec, A., Grz?dziel, J., & Palusi?ska-Szysz, M. (2015). Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Applied Soil Ecology, 85, 94–113. https://doi.org/10.1016/j.apsoil.2014.08.0103

Joshi, M., Patel, H., Gupte, S., & Gupte, A. (2013). Nutrient i4mprovement for simultaneous production of exopolysaccharide and mycelial biomass by submerged cultivation of Schizophyllum commune AGMJ-1 using statistical optimization. 3 Biotech, 3(4), 307–318. https://doi.org/10.1007/s13205-012-0103-3

Khani, M., Bahrami, A., Chegeni, A., Ghafari, M. D., & Mansouran Zadeh, Al. (2016). Optimization of carbon and nitrogen sources for extracellular polymeric substances production by Chryseobacterium indologenes MUT.2. Iranian Journal of Biotechnology, 14(2), 13–18. https://doi.org/10.15171/ijb.1266

Liu, J., Wang, X., Pu, H., Liu, S., Kan, J., & Jin, C. (2017). Recent advances in endophytic exopolysaccharides: Production, structural characterization, physiological role and biological activity. Carbohydrate Polymers, 157, 1113–1124. https://doi.org/10.1016/j.carbpol.2016.10.084

Mahapatra, S., & Banerjee, D. (2013). Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydrate Polymers, 97(2), 627–634. https://doi.org/10.1016/j.carbpol.2013.05.039

Marimuthu, S., J, S. M. P., & Rajendran, K. (2023). Artificial neural network modeling and statistical optimization of medium components to enhance production of exopolysaccharide by Bacillus sp. EPS003. Preparative Biochemistry & Biotechnology, 53(2), 136–147. https://doi.org/10.1080/10826068.2022.2098322

Monteiro, N. K., Aranda-Selverio, G., Exposti, D. T. D., Silva, M. de L. C., Lemos, E. G. M., Campanharo, J. C., & Silveira, J. L. M. (2012). Caracterização química dos géis produzidos pelas bactérias diazotróficas Rhizobium tropici e Mesorhizobium sp. Química Nova, 35(4), 705–708. https://doi.org/10.1590/S0100-40422012000400009

Moscovici, M. (2015). Present and future medical applications of microbial exopolysaccharides. Frontiers in Microbiology, 6, 1012. https://doi.org/10.3389/fmicb.2015.01012

Mukherjee, P., Raj, N., & Sivaprakasam, S. (2023). Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria. Biomass Conversion and Biorefinery, 13(17), 15639–15658. https://doi.org/10.1007/s13399-023-05038-3

Nham, Q., Legrand, C., & Lindehoff, E. (2024). Microalgal production and nutrient recovery under mixotrophic mode using cheese whey permeate. Bioresource Technology, 410, 131250. https://doi.org/10.1016/j.biortech.2024.131250

Nwodo, U., Green, E., & Okoh, A. (2012). Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences, 13(12), 14002–14015. https://doi.org/10.1016/j.biortech.2024.131250

Oliveira, J. M., Amaral, S. A., & Burkert, C. A. V. (2018). Rheological, textural and emulsifying properties of an exopolysaccharide produced by Mesorhizobium loti grown on a 5crude glycerol-based medium. International Journal of Biological Macromolecules, 120, 2180–2187. https://doi.org/10.1016/j.ijbiomac.2018.06.158

Oliveira, J. M., Michelon, M., & Burkert, C. A. V. (2020). Biotechnological potential of soybean molasses for the production of extracellular polymers by diazotrophic bacteria. Biocatalysis and Agricultural Biotechnology, 25, 101609. https://doi.org/10.1016/j.bcab.2020.101609

Pal, A., & Paul, A. K. (2013). Optimization of cultural conditions for production of extracellular polymeric substances (EPS) by serpentine rhizobacterium Cupriavidus pauculus KPS 201. Journal of Polymers, 2013, 1–7. https://doi.org/10.1155/2013/692374

Pastor-Bueis, R., Jiménez-Gómez, A., Barquero, M., Mateos, P. F., & González-Andrés, F. (2021). Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonised spaces inside the nodule. European Journal of Agronomy, 122, 126187. https://doi.org/10.1016/j.eja.2020.126187

Paulo, E. M., Boffo, E. F., Branco, A., Valente, Â. M. M. P., Melo, I. S., Ferreira, A. G., & Assis, S. A. de. (2012). Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2 strain. Anais da Academia Brasileira de Ciências, 84(2), 495–508. https://doi.org/10.1590/S0001-37652012000200018

Pokhrel, C. P., & Oga, S. (2007). Cattle bedding waste used as a substrate in the cultivation of Agaricus blazei Murill. Journal of the Faculty of Agriculture, Kyushu University, 52(2), 295–298. https://doi.org/10.5109/9317

Razika, G., Amira, B., Yacine, B., & Benguedouar, A. (2012). Influence of carbon source on the production of exopolysacharides by Rhizobium sullae and on the nodulation of Hedysarum coronarium L. legume. African Journal of Microbiology Research, 6(30), 5940–5946. https://doi.org/10.5897/AJMR12.393

Ribeiro, V. A., & Burkert, C. A. V. (2016). Exopolysaccharides produced by Rhizobium: Production, composition and rheological properties. Journal of Polymer and Biopolymer Physics Chemistry, 4(1), 1–6. https://doi.org/10.12691/jpbpc-4-1-1

Risner, D., Marco, M. L., Pace, S. A., & Spang, E. S. (2020). The potential production of the bioactive compound pinene using whey permeate. Processes, 8(3), 263. https://doi.org/10.3390/pr8030263

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.

Roesler, B. C. S., Vaz, R. G., Castellane, T. C. L., de Macedo Lemos, E. G., & Burkert, C. A. V. (2021). The potential of extracellular biopolymer production by Mesorhizobium sp. from monosaccharide constituents of lignocellulosic biomass. Biotechnology Letters, 43(7), 1385–1394. https://doi.org/10.1007/s10529-021-03119-9

Ruiz?Villafán, B., Cruz?Bautista, R., Manzo?Ruiz, M., Passari, A. K., Villarreal?Gómez, K., Rodríguez?Sanoja, R., & Sánchez, S. (2022). Carbon catabolite regulation of secondary metabolite formation, an old but not well?established regulatory system. Microbial Biotechnology, 15(4), 1058–1072. https://doi.org/10.1111/1751-7915.13791

Sayyed, R. Z., Jamadar, D. D., & Patel, P. R. (2011). Production of exo-polysaccharide by Rhizobium sp. Indian Journal of Microbiology, 51(3), 294–300. https://doi.org/10.1007/s12088-011-0115-4

Seesuriyachan, P., Kuntiya, A., Hanmoungjai, P., Techapun, C., Chaiyaso, T., & Leksawasdi, N. (2012). Optimization of exopolysaccharide overproduction by Lactobacillus confusus in solid state fermentation under high salinity stress. Bioscience, Biotechnology, and Biochemistry, 76(5), 912–917. https://doi.org/10.1271/bbb.110905

Sellami, M., Oszako, T., Miled, N., & Ben Rebah, F. (2015). Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum. Brazilian Journal of Microbiology, 46(2), 407–413. https://doi.org/10.1590/S1517-838246220140153

Sengupta, D., Datta, S., & Biswas, D. (2018). Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Applied Microbiology and Biotechnology, 102(4), 1587–1598. https://doi.org/10.1007/s00253-018-8745-7

Serrato, R. V., Sassaki, G. L., Cruz, L. M., Pedrosa, F. O., Gorin, P. A. J., & Iacomini, M. (2006). Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Canadian Journal of Microbiology, 52(5), 489–493. https://doi.org/10.1139/w05-155

Sharma, K., Sharma, N., & Sharma, R. (2018). A study on optimization of exopolysaccharides from a potential Lactobacillus casei KL14 KX774469. International Journal of Current Microbiology and Applied Sciences, 7(2), 3410–3418. https://doi.org/10.20546/ijcmas.2018.702.406

Silva, M. de L. C. da, Martinez, P. F., Izeli, N. L., Silva, I. R., Vasconcelos, A. F. D., Cardoso, M. de S., & Barbosa, A. de M. (2006). Caracterização química de glucanas fúngicas e suas aplicações biotecnológicas. Química Nova, 29(1), 85–92. https://doi.org/10.1590/S0100-40422006000100017

Staudt, A. K., Wolfe, L. G., & Shrout, J. D. (2012). Variations in exopolysaccharide production by Rhizobium tropici. Archives of Microbiology, 194(3), 197–206. https://doi.org/10.1007/s00203-011-0742-5

Su, C., Chi, Z., & Lu, W. (2007). Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113. Chinese Journal of Oceanology and Limnology, 25(4), 411–417. https://doi.org/10.1007/s00343-007-0411-3

Suresh Kumar, A., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides – a perception. Journal of Basic Microbiology, 47(2), 103–117. https://doi.org/10.1002/jobm.200610203

Torres, C. A. V., Marques, R., Ferreira, A. R. V., Antunes, S., Grandfils, C., Freitas, F., & Reis, M. A. M. (2014). Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production. International Journal of Biological Macromolecules, 71, 81–86. https://doi.org/10.1016/j.ijbiomac.2014.04.012

Woo, S.-M., Subramanian, P., Ramasamy, K., Joe, M. M., & Sa, T.-M. (2012). EPS production, PHB accumulation and abiotic stress endurance of plant growth promoting Methylobacterium strains grown in a high carbon concentration. Korean Journal of Soil Science and Fertilizer, 45(4), 572–581. https://doi.org/10.7745/KJSSF.2012.45.4.572

Zhou, F., Wu, Z., Chen, C., Han, J., Ai, L., & Guo, B. (2014). Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocolloids, 36, 362–368. https://doi.org/10.1016/j.foodhyd.2013.08.016

Downloads

Published

2025-11-10

How to Cite

Cruz, S. K. da, Ferreira Filho, R. dos S. ., Burkert, J. F. de M., & Burkert, C. A. da V. (2025). Effects of process conditions on exopolysaccharide produced by Mesorhizobium sp. in whey permeate. Acta Scientiarum. Technology, 48(1), e74391. https://doi.org/10.4025/actascitechnol.v48i1.74391

Issue

Section

Chemical Engineering