<b>Mixed models in cerebral ischemia study
DOI:
https://doi.org/10.4025/actascitechnol.v38i3.28314Palavras-chave:
longitudinal data, random effect, covariance structure, latency, fish oilResumo
The data modeling from longitudinal studies stands out in the current scientific scenario, especially in the areas of health and biological sciences, which induces a correlation between measurements for the same observed unit. Thus, the modeling of the intra-individual dependency is required through the choice of a covariance structure that is able to receive and accommodate the sample variability. However, the lack of methodology for correlated data analysis may result in an increased occurrence of type I or type II errors and underestimate/overestimate the standard errors of the model estimates. In the present study, a Gaussian mixed model was adopted for the variable response latency of an experiment investigating the memory deficits in animals subjected to cerebral ischemia when treated with fish oil (FO). The model parameters estimation was based on maximum likelihood methods. Based on the restricted likelihood ratio test and information criteria, the autoregressive covariance matrix was adopted for errors. The diagnostic analyses for the model were satisfactory, since basic assumptions and results obtained corroborate with biological evidence; that is, the effectiveness of the FO treatment to alleviate the cognitive effects caused by cerebral ischemia was found.
Â
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
