Optimization of osmotic pretreatment of tomato slices using response surface methodology and further hot-air drying
DOI:
https://doi.org/10.4025/actascitechnol.v45i1.62457Keywords:
pulsed vacuum osmotic dehydration; sodium uptake; central composite design; dried tomato.Abstract
Tomato is one of the most cultivated vegetables, playing important role in the human feed. Due to its characteristics and composition, tomatoes present reduced shelf life, and preservative techniques are required. In this study, response surface methodology was used to optimize process conditions during the osmotic dehydration (OD) of tomato slices, through the desirability function. Optimization factors were absolute pressure (21-89 kPa), vacuum application period (7-15 min), and osmotic solution water activity (0.893-0.943), while investigated responses were sodium incorporation (NaI), water loss (WL), solid gain (SG), weight reduction (WR), and osmodehydrated product water activity (ODaw). The optimized conditions were achieved, and a further hot-air drying (HAD) was conducted at different temperatures and air velocities. During the OD, lower absolute pressure, and osmotic solution water activity led to lower NaI and higher WL and WR. Shorter drying time and higher diffusivity were obtained at higher temperature and air velocity, during the HAD. The dried tomato slices with sodium incorporation reduction were evaluated with regard to the final water activity, rehydration and color, in which no significant differences (p > 0.05) were observed between the treatments.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



