Deciphering Motor Imagery EEG Signals of Unilateral Upper Limb Movement using EEGNet
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.69697Palavras-chave:
brain computer interface; electroencephalogram; intuitive control; stroke; convolutional neural networks; support vector machine.Resumo
Brain Computer Interfaces (BCI) face challenges in achieving sufficient control dimensions from decoding movements of left and right limb. To address this limitation, the motor imagery (MI) of fine movements from the same arm or leg can provide natural control of external equipment and increase the available control dimensions in a BCI system. However, conventional feature extraction and machine learning techniques have shown limited potential in detecting variations in EEG signals during the imagination of movements involving unilateral limb joints. In this study, we analyse the classification of movements specific to a single limb by utilizing EEGNet. We investigate the performance of EEGNet in classifying three different states: right-hand MI, right-elbow MI, and the rest state EEG signal. Our findings demonstrate that EEGNet achieves mean classification accuracy of 71.24% for the three-class classification task. The lowest accuracy observed was 58.89%, while the highest classification accuracy reached 84.44%. The results indicate that EEGNet has the potential to effectively differentiate MI signals of joints located on the same limb, offering promising avenues for intuitive control of external equipment in BCI applications. By surpassing the limitations of conventional techniques, EEGNet opens up new possibilities for improving control dimensions and enhancing the functionality of BCI systems.
Downloads
Referências
Bi, J., & Chu, M. (2023). TDLNet: Transfer Data Learning Network for Cross-Subject Classification Based on Multiclass Upper Limb Motor Imagery EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3958-3967. https://doi.org/10.1109/tnsre.2023.3323509
Cassidy, J. M., & Cramer, S. C. (2017). Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery after Stroke. Translational stroke research, 8(1), 33-46. https://doi.org/10.1007/s12975-016-0467-5
Chu, Y., Zhao, X., Zou, Y., Xu, W., Song, G., Han, J., & Zhao, Y. (2020). Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression. Journal of Neural Engineering, 17(4), 046029. https://doi.org/10.1088/1741-2552/aba7cd
Doud, A. J., Lucas, J. P., Pisansky, M. T., & He, B. (2011). Continuous Three-Dimensional Control of a Virtual Helicopter Using a Motor Imagery Based Brain-Computer Interface. PLoS ONE, 6(10), e26322. https://doi.org/10.1371/journal.pone.0026322
Edelman, B. J., Baxter, B., & He, B. (2016). EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks. IEEE Transactions on Biomedical Engineering, 63(1), 4-14. https://doi.org/10.1109/tbme.2015.2467312
Guo, Y., Wan, L., Sheng, X., Wang, G., Kang, S., Zhou, H., & Zhang, X. (2024). The Application of Superlet Transform in EEG-Based Motor Imagery Classification of Unilateral Knee Movement. In Lecture notes in electrical engineering, 511-521. https://doi.org/10.1007/978-981-97-1087-4_48
Hong, X., Lu, Z. K., Teh, I., Nasrallah, F. A., Teo, W. P., Ang, K. K., Phua, K. S., Guan, C., Chew, E., & Chuang, K. H. (2017). Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08928-5
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain - computer interfaces. Journal of Neural Engineering, 15(5), 056013. https://doi.org/10.1088/1741-2552/aace8c
Lee, M., Jeong, J. H., Kim, Y. H., & Lee, S. W. (2021). Decoding Finger Tapping With the Affected Hand in Chronic Stroke Patients During Motor Imagery and Execution. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, 29, 1099-1109. https://doi.org/10.1109/tnsre.2021.3087506
Liao, K., Xiao, R., Gonzalez, J., & Ding, L. (2014). Decoding Individual Finger Movements from One Hand Using Human EEG Signals. PLoS ONE, 9(1), e85192. https://doi.org/10.1371/journal.pone.0085192
Ma, X., Qiu, S., & He, H. (2020a). Multi-channel EEG recording during motor imagery of different joints from the same limb. Harvard Dataverse. https://doi.org/10.7910/DVN/RBN3XG
Ma, X., Qiu, S., Wei, W., Wang, S., & He, H. (2020b). Deep Channel-Correlation Network for Motor Imagery Decoding from the Same Limb. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 297-306. https://doi.org/10.1109/tnsre.2019.2953121
Ma, X., Qiu, S., & He, H. (2022). Time-Distributed Attention Network for EEG-Based Motor Imagery Decoding From the Same Limb. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 496-508. https://doi.org/10.1109/tnsre.2022.3154369
Padfield, N., Camilleri, K., Camilleri, T., Fabri, S., & Bugeja, M. (2022). A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control. Sensors, 22(15), 5802. https://doi.org/10.3390/s22155802
Peng, R., Zhao, C., Jiang, J., Kuang, G., Cui, Y., Xu, Y., Du, H., Shao, J., & Wu, D. (2022). TIE-EEGNet: Temporal Information Enhanced EEGNet for Seizure Subtype Classification. In IEEE Transactions on Neural Systems and Rehabilitation Engineering (pp. 2567-2576). https://doi.org/10.1109/tnsre.2022.3204540
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 110(11), 1842-1857. https://doi.org/10.1016/s1388-2457(99)00141-8
Rao, Y., Zhang, L., Jing, R., Huo, J., Yan, K., He, J., Hou, X., Mu, J., Geng, W., Cui, H., Hao, Z., Zan, X., Ma, J., & Chou, X. (2024). An optimized EEGNet decoder for decoding motor image of four class fingers flexion. Brain Research, 1841, 149085. https://doi.org/10.1016/j.brainres.2024.149085
Sanes, J. N., Donoghue, J. P., Thangaraj, V., Edelman, R. R., & Warach, S. (1995). Shared Neural Substrates Controlling Hand Movements in Human Motor Cortex. Science, 268(5218), 1775-1777. https://doi.org/10.1126/science.7792606
Satam, I. (2024). EEG signal ANFIS classification for motor imagery for different joints of the same limb. Vojnotehnicki Glasnik, 72(1), 330-350. https://doi.org/10.5937/vojtehg72-46601
Tavakolan, M., Frehlick, Z., Yong, X., & Menon, C. (2017). Classifying three imaginary states of the same upper extremity using time-domain features. PLoS ONE, 12(3), e0174161. https://doi.org/10.1371/journal.pone.0174161
VuÄković, A., & Sepulveda, F. (2012). A two-stage four-class BCI based on imaginary movements of the left and the right wrist. Medical Engineering and Physics, 34(7), 964-971. https://doi.org/10.1016/j.medengphy.2011.11.001
Yadav, H., & Maini, S. (2023). Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Multimedia Tools and Applications, 82, 47003 - 47047. https://doi.org/10.1007/s11042-023-15653-x
Yong, X., & Menon, C. (2015). EEG Classification of Different Imaginary Movements within the Same Limb. PLoS ONE, 10(4), e0121896. https://doi.org/10.1371/journal.pone.0121896
Zhang, X., Yong, X., & Menon, C. (2017). Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks. PLoS ONE, 12(11), e0188293. https://doi.org/10.1371/journal.pone.0188293
Zhang, H., Wang, Z., Yu, Y., Yin, H., Chen, C., & Wang, H. (2022). An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task. Brain Science Advances, 8(2), 111-126. https://doi.org/10.26599/bsa.2022.9050007
Zhou, J., Yao, J., Deng, J., & Dewald, J. P. (2009). EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects. Computers in Biology and Medicine, 39(5), 443 - 452. https://doi.org/10.1016/j.compbiomed.2009.02.004
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.