Spatio-temporal distribution evolution and factors controlling landslides in Beichua County after Wenchuan earthquake
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70856Palavras-chave:
landslide; restoration level; evolution; Beichuan County; Wenchuan earthquakeResumo
The earthquake triggered numerous secondary geological disasters, mainly landslides, which can have considerable impact on the environment as well as people's lives in the affected region. In this research, to obtain clear understanding of the restoration level and the evolution of landslides after an earthquake as massive as the Wenchuan earthquake, Beichuan County of Sichuan Province was considered an example, and the development characteristics and the evolution of post-earthquake landslides in the affected area were studied. Using ALOS, GF-1, and ZY-3 remote sensing images and GIS technology, the development of landslides in Beichuan County over a period of 13 years (2007–2019), comprising the period before and after the Wenchuan earthquake, was analysed. The main inducing factors of landslides before and after the disaster were discussed from many aspects. After the Wenchuan earthquake, the number and the area affected by landslides in Beichuan County drastically increased. Five years after the earthquake, there was rapid recovery in the development of landslides; however, it has not fully returned to the state before the earthquake yet. Many landslides have also occurred in medium- and high-altitude areas and medium- and high-slope areas. However, as time goes on, the high-risk areas of landslides began to migrate slowly to areas with lower altitude and gentle slope. Before the earthquake, river erosion was the main cause of landslides in the study area. After the earthquake, landslides were concentrated in the southeast and central parts of this area—places with strong earthquake intensities—which was attributed to seismogenic faults. With the recovery of landslide development, river erosion became the main contributing factor again. The findings of this research can provide insights to aid disaster prevention in the Wenchuan earthquake-stricken area and the spatio-temporal evolution of landslide disaster development in earthquake-stricken areas.
Downloads
Referências
Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101–111. https://doi.org/10.1016/j.geomorph.2018.06.006 DOI: https://doi.org/10.1016/j.geomorph.2018.06.006
Chen, H. X., & Zhang, L. M. (2014). A physically-based distributed cell model for predicting regional rainfall-induced shallow slope failures. Engineering Geology, 176, 79–92. https://doi.org/10.1016/j.enggeo.2014.04.011 DOI: https://doi.org/10.1016/j.enggeo.2014.04.011
Chen, M., Tang, C., Li, M., Xiong, J., Luo, Y., Shi, Q., Zhang, X., Tie, Y., & Feng, Q. (2022). Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area. CATENA, 210, 105871. https://doi.org/10.1016/j.catena.2021.105871 DOI: https://doi.org/10.1016/j.catena.2021.105871
Chen, M., Tang, C., Wang, X., Xiong, J., Shi, Q., Zhang, X., Li, M., Luo, Y., Tie, Y., & Feng, Q. (2021). Temporal and spatial differentiation in the surface recovery of post-seismic landslides in Wenchuan earthquake-affected areas. Ecological Informatics, 64, 101356. https://doi.org/10.1016/j.ecoinf.2021.101356 DOI: https://doi.org/10.1016/j.ecoinf.2021.101356
Chen, X. L., Ran, H. L., & Yang, W. T. (2012). Evaluation of factors controlling large earthquake-induced landslides by the Wenchuan earthquake. Natural Hazards and Earth System Sciences, 12 (12), 3645–3657. https://doi.org/10.5194/nhess-12-3645-2012 DOI: https://doi.org/10.5194/nhess-12-3645-2012
Chen, Y., Irfan, M., Uchimura, T., Wu, Y., & Yu, F. (2019). Development of elastic wave velocity threshold for rainfall-induced landslide prediction and early warning. Landslides, 16 (5), 955–968. https://doi.org/10.1007/s10346-019-01138-2 DOI: https://doi.org/10.1007/s10346-019-01138-2
Cui, P., Chen, X.-Q., Zhu, Y.-Y., Su, F.-H., Wei, F.-Q., Han, Y.-S., Liu, H.-J., & Zhuang, J.-Q. (2011). The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Natural Hazards, 56 (1), 19–36. https://doi.org/10.1007/s11069-009-9392-1 DOI: https://doi.org/10.1007/s11069-009-9392-1
Dai, F. C., Xu, C., Yao, X., Xu, L., Tu, X. B., & Gong, Q. M. (2011). Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 40 (4), 883–895. https://doi.org/10.1016/j.jseaes.2010.04.010 DOI: https://doi.org/10.1016/j.jseaes.2010.04.010
Deng, Q., Gong, L., Zhang, L., Yuan, R., Xue, Y., Geng, X., & Hu, S. (2017). Simulating dynamic processes and hypermobility mechanisms of the Wenjiagou rock avalanche triggered by the 2008 Wenchuan earthquake using discrete element modelling. Bulletin of Engineering Geology and the Environment, 76 (3), 923–936. https://doi.org/10.1007/s10064-016-0914-2 DOI: https://doi.org/10.1007/s10064-016-0914-2
Di Martire, D., Paci, M., Confuorto, P., Costabile, S., Guastaferro, F., Verta, A., & Calcaterra, D. (2017). A nation-wide system for landslide mapping and risk management in Italy: The second Not-ordinary Plan of Environmental Remote Sensing. International Journal of Applied Earth Observation and Geoinformation, 63, 143–157. https://doi.org/10.1016/j.jag.2017.07.018 DOI: https://doi.org/10.1016/j.jag.2017.07.018
Diao, F., Wang, R., Wang, Y., Xiong, X., & Walter, T. R. (2018). Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. Earth and Planetary Science Letters, 495, 202–212. https://doi.org/10.1016/j.epsl.2018.05.020 DOI: https://doi.org/10.1016/j.epsl.2018.05.020
Fan, X., Scaringi, G., Xu, Q., Zhan, W., Dai, L., Li, Y., Pei, X., Yang, Q., & Huang, R. (2018). Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides, 15 (5), 967–983. https://doi.org/10.1007/s10346-018-0960-x DOI: https://doi.org/10.1007/s10346-018-0960-x
Fan, X., Zhan, W., Dong, X., Van Westen, C., Xu, Q., Dai, L., Yang, Q., Huang, R., & Havenith, H.-B. (2018). Analyzing successive landslide dam formation by different triggering mechanisms: The case of the Tangjiawan landslide, Sichuan, China. Engineering Geology, 243, 128–144. https://doi.org/10.1016/j.enggeo.2018.06.016 DOI: https://doi.org/10.1016/j.enggeo.2018.06.016
Fang, D., Hu, Z. W., & Wang, Z. H. (2012). Spatial prediction of earthquake secondary landslide disaster in Beichuan County based on GIS. Journal of Mountain, 30 (2), 230–238.
Feng, W. K., Dun, J. W., Yi, X. Y., & Zhang, G. Q. (2020). Deformation analysis of Woda Village giant landslide in Jinsha River Basin based on SBAS-InSAR technology. Journal of Engineering Geology, 28 (2), 384–393. https://doi.org/10.13544/j.cnki.jeg.2019-411
Fu, G. X. (2023). Resurrection characteristics and risk assessment of coseismic landslide based on InSAR technology. Southwest University of Science and Technology.
Golovko, D., Roessner, S., Behling, R., Wetzel, H.-U., & Kleinschmit, B. (2017). Evaluation of remote-sensing-based landslide inventories for hazard assessment in Southern Kyrgyzstan. Remote Sensing, 9 (9), 943. https://doi.org/10.3390/rs9090943 DOI: https://doi.org/10.3390/rs9090943
Gorokhovich, Y., & Vustianiuk, A. (2021). Implications of slope aspect for landslide risk assessment: A case study of Hurricane Maria in Puerto Rico in 2017. Geomorphology, 391, 107874. https://doi.org/10.1016/j.geomorph.2021.107874 DOI: https://doi.org/10.1016/j.geomorph.2021.107874
Guo, D. P., He, C., Xu, C., & Hamada, M. (2015). Analysis of the relations between slope failure distribution and seismic ground motion during the 2008 Wenchuan earthquake. Soil Dynamics and Earthquake Engineering, 72, 99–107. https://doi.org/10.1016/j.soildyn.2015.02.001 DOI: https://doi.org/10.1016/j.soildyn.2015.02.001
Huang, F., Xiong, H., Yao, C., Catani, F., Zhou, C., & Huang, J. (2023). Uncertainties of landslide susceptibility prediction considering different landslide types. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2023.03.001 DOI: https://doi.org/10.1016/j.jrmge.2023.03.001
Huang, R., & Li, W. (2014). Post-earthquake landsliding and long-term impacts in the Wenchuan earthquake area, China. Engineering Geology, 182, 111–120. https://doi.org/10.1016/j.enggeo.2014.07.008 DOI: https://doi.org/10.1016/j.enggeo.2014.07.008
Huang, R., Pei, X., Fan, X., Zhang, W., Li, S., & Li, B. (2012). The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides, 9 (1), 131–142. https://doi.org/10.1007/s10346-011-0276-6 DOI: https://doi.org/10.1007/s10346-011-0276-6
Jiang, Z., Yuan, L., Huang, D., Yang, Z., & Chen, W. (2017). Postseismic deformation associated with the 2008 Mw 7.9 Wenchuan earthquake, China: Constraining fault geometry and investigating a detailed spatial distribution of afterslip. Journal of Geodynamics, 112, 12–21. https://doi.org/10.1016/j.jog.2017.09.001 DOI: https://doi.org/10.1016/j.jog.2017.09.001
Kincey, M., Batty, L., Chapman, H., Gearey, B., Ainsworth, S., & Challis, K. (2014). Assessing the changing condition of industrial archaeological remains on Alston Moor, UK, using multisensor remote sensing. Journal of Archaeological Science, 45, 36–51. https://doi.org/10.1016/j.jas.2014.02.008 DOI: https://doi.org/10.1016/j.jas.2014.02.008
Kumar, V., Gupta, V., & Jamir, I. (2018). Hazard evaluation of progressive Pawari landslide zone, Satluj valley, Himachal Pradesh, India. Natural Hazards, 93 (2), 1029–1047. https://doi.org/10.1007/s11069-018-3339-3 DOI: https://doi.org/10.1007/s11069-018-3339-3
Lan, J., & Chen, X. L. (2020). Evolution characteristics of landslides triggered by 2008 Ms8.0 Wenchuan earthquake in Yingxiu area. Seismology and Geology, 42 (1), 125–146.
Li, C. R., Wang, M., & Liu, K. (2018). A decadal evolution of landslides and debris flows after the Wenchuan earthquake. Geomorphology, 323, 1–12. https://doi.org/10.1016/j.geomorph.2018.09.010 DOI: https://doi.org/10.1016/j.geomorph.2018.09.010
Li, F., Zhai, P., Huang, J., & Tan, H. (2022). Influences of the heterogeneity of viscoelastic medium on postseismic deformation of the 2008 MW7.9 Wenchuan earthquake. Geodesy and Geodynamics, 13 (1), 1–10. https://doi.org/10.1016/j.geog.2021.08.006 DOI: https://doi.org/10.1016/j.geog.2021.08.006
Li, M. W., Xiong, J., Chen, M., & Tang, C. (2023). Vegetation restoration and dynamic evolution of coseismic landslide activity in Wenchuan earthquake area. Hydrogeological Engineering Geology, 50 (3), 182–192. https://doi.org/10.16030/j.cnki.issn.1000-3665.202209049
Li, P. P., & She, T. (2015). Distribution characteristics of geological hazards induced by heavy rainfall in Beichuan County. Science and Technology Outlook, 25 (26), 172.
Li, S. D., Li, X., Zhang, J., He, J. M., Li, S. H., & Wang, Y. C. (2010). Study on the genetic mechanism of Tangjiashan landslide and the overall stability of dam. Journal of Rock Mechanics and Engineering, 29 (S1), 2908–2915.
Li, X., Wu, Y., He, S., & Su, L. (2016). Application of the material point method to simulate the post-failure runout processes of the Wangjiayan landslide. Engineering Geology, 212, 1–9. https://doi.org/10.1016/j.enggeo.2016.07.014 DOI: https://doi.org/10.1016/j.enggeo.2016.07.014
Liu, B., Hu, X. W., & He, K. (2023). Study on the distribution characteristics and disaster model of earthquake cracks in Wenchuan strong earthquake area. Disaster Science, 1–15.
Liu, Z. J., Tan, K., Wang, Q., Wang, L., Zhang, J., Zhao, B., & Qiao, X. J. (2021). Numerical simulation analysis of post-seismic afterslip and viscoelastic relaxation following the Wenchuan earthquake. Geodesy and Geodynamics, 41 (6), 577–583. https://doi.org/10.14075/j.jgg.2021.06.005
Lu, J., Li, W., Zhan, W., & Tie, Y. (2022). Distribution and mobility of coseismic landslides triggered by the 2018 Hokkaido earthquake in Japan. Remote Sensing, 14 (16), 3957. https://doi.org/10.3390/rs14163957 DOI: https://doi.org/10.3390/rs14163957
Luo, G., Chen, X., Zhang, Q., He, K., Wu, M., Shen, W., & Liu, B. (2023). Failure mechanism and sedimentary characteristics of a catastrophic rockslide avalanche induced by the 2008 Wenchuan earthquake. Landslides, 20 (1), 25–38. https://doi.org/10.1007/s10346-022-01955-y DOI: https://doi.org/10.1007/s10346-022-01955-y
McAdoo, B. G., Quak, M., Gnyawali, K. R., Adhikari, B. R., Devkota, S., Rajbhandari, P. L., & Sudmeier-Rieux, K. (2018). Roads and landslides in Nepal: How development affects environmental risk. Natural Hazards and Earth System Sciences, 18 (12), 3203–3210. https://doi.org/10.5194/nhess-18-3203-2018 DOI: https://doi.org/10.5194/nhess-18-3203-2018
Prince, S. D. (2019). Challenges for remote sensing of the Sustainable Development Goal SDG 15.3.1 productivity indicator. Remote Sensing of Environment, 234, 111428. https://doi.org/10.1016/j.rse.2019.111428 DOI: https://doi.org/10.1016/j.rse.2019.111428
Qin, Y., Zhang, D., Zheng, W., Yang, J., Chen, G., Duan, L., Liang, S., & Peng, H. (2023). Interaction of earthquake-triggered landslides and local relief: Evidence from the 2008 Wenchuan earthquake. Landslides, 20 (4), 757–770. https://doi.org/10.1007/s10346-022-01996-3 DOI: https://doi.org/10.1007/s10346-022-01996-3
Smith, W. K., Dannenberg, M. P., Yan, D., Herrmann, S., Barnes, M. L., Barron-Gafford, G. A., Biederman, J. A., Ferrenberg, S., Fox, A. M., Hudson, A., Knowles, J. F., MacBean, N., Moore, D. J. P., Nagler, P. L., Reed, S. C., Rutherford, W. A., Scott, R. L., Wang, X., & Yang, J. (2019). Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 233, 111401. https://doi.org/10.1016/j.rse.2019.111401 DOI: https://doi.org/10.1016/j.rse.2019.111401
Sòria-Perpinyà, X., Vicente, E., Urrego, P., Pereira-Sandoval, M., Ruíz-Verdú, A., Delegido, J., Soria, J. M., & Moreno, J. (2020). Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Science of The Total Environment, 698, 134305. https://doi.org/10.1016/j.scitotenv.2019.134305 DOI: https://doi.org/10.1016/j.scitotenv.2019.134305
Tang, J. F., & Wang, Q. (2015). Analysis of geological disasters in Beichuan settlement space in 2013. Disaster Science, 30 (1), 87–91.
Tian, Y., Huang, H., Xie, Z. S., She, T., & Li, J. Y. (2023). History and formation mechanism of Tangjiawan landslide in Beichuan segment of Yingxiu-Beichuan fault zone. Sedimentation and Tethyan Geology, 43 (3), 629–639. https://doi.org/10.19826/j.cnki.1009-3850.2022.03004
Valagussa, A., Marc, O., Frattini, P., & Crosta, G. B. (2019). Seismic and geological controls on earthquake-induced landslide size. Earth and Planetary Science Letters, 506, 268–281. https://doi.org/10.1016/j.epsl.2018.11.005 DOI: https://doi.org/10.1016/j.epsl.2018.11.005
Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A., Dai, L., Xu, Q., & Huang, R. (2019). Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: Spatial distribution, controlling factors, and possible failure mechanism. Landslides, 16 (8), 1551–1566. https://doi.org/10.1007/s10346-019-01187-7 DOI: https://doi.org/10.1007/s10346-019-01187-7
Wang, J., Jin, W., Cui, Y., Zhang, W., Wu, C., & Alessandro, P. (2018). Earthquake-triggered landslides affecting a UNESCO Natural Site: The 2017 Jiuzhaigou Earthquake in the World National Park, China. Journal of Mountain Science, 15 (7), 1412–1428. https://doi.org/10.1007/s11629-018-4823-7 DOI: https://doi.org/10.1007/s11629-018-4823-7
Wang, S. Y., Ye, T. L., Lu, X. B., & Nie, X. Y. (2014). Numerical simulation of Beichuan slope failure under rainfall conditions. Chinese Journal of Geological Hazards and Prevention, 25 (2), 43–48. https://doi.org/10.16031/j.cnki.issn.1003-8035.2014.02.011
Wang, X., Zhang, S., Zhang, H., Wang, D., Bai, M., Li, W., Li, S., Sun, T., & Wang, Y. (2023). Prediction of landslide susceptibility in Wenchuan County based on pixel-level samples. Bulletin of Engineering Geology and the Environment, 82 (6), 203. https://doi.org/10.1007/s10064-023-03230-3 DOI: https://doi.org/10.1007/s10064-023-03230-3
Wu, X. Y., Xu, C., Xu, X. W., Chen, G. H., Zhu, A. L., Zhang, L., Yu, G., & Du, K. (2022). A Web-GIS hazards information system of the 2008 Wenchuan Earthquake in China. Natural Hazards Research, 2 (3), 210–217. https://doi.org/10.1016/j.nhres.2022.03.003 DOI: https://doi.org/10.1016/j.nhres.2022.03.003
Xie, J., Coulthard, T. J., Wang, M., & Wu, J. (2022). Tracing seismic landslide-derived sediment dynamics in response to climate change. CATENA, 217, 106495. https://doi.org/10.1016/j.catena.2022.106495 DOI: https://doi.org/10.1016/j.catena.2022.106495
Xiong, J., Tang, C., Tang, H., Chen, M., Zhang, X., Shi, Q., Chang, M., Gong, L., Li, N., & Li, M. (2022). Long-term hillslope erosion and landslide–channel coupling in the area of the catastrophic Wenchuan earthquake. Engineering Geology, 305, 106727. https://doi.org/10.1016/j.enggeo.2022.106727 DOI: https://doi.org/10.1016/j.enggeo.2022.106727
Xu, C., Xu, X., Yao, X., & Dai, F. (2014). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11 (3), 441–461. https://doi.org/10.1007/s10346-013-0404-6 DOI: https://doi.org/10.1007/s10346-013-0404-6
Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., & Shaw, J. (2009). Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37 (6), 515–518. https://doi.org/10.1130/G25462A.1 DOI: https://doi.org/10.1130/G25462A.1
Yang, Z., Cai, H., Shao, W., Huang, D., Uchimura, T., Lei, X., Tian, H., & Qiao, J. (2019). Clarifying the hydrological mechanisms and thresholds for rainfall-induced landslide: In situ monitoring of big data to unsaturated slope stability analysis. Bulletin of Engineering Geology and the Environment, 78 (4), 2139–2150. https://doi.org/10.1007/s10064-018-1295-5 DOI: https://doi.org/10.1007/s10064-018-1295-5
Yano, A., Shinohara, Y., Tsunetaka, H., Mizuno, H., & Kubota, T. (2019). Distribution of landslides caused by heavy rainfall events and an earthquake in northern Aso Volcano, Japan from 1955 to 2016. Geomorphology, 327, 533–541. https://doi.org/10.1016/j.geomorph.2018.11.024 DOI: https://doi.org/10.1016/j.geomorph.2018.11.024
Yin, Y., Li, B., & Wang, W. (2015). Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks. Landslides, 12 (3), 537–547. https://doi.org/10.1007/s10346-014-0497-6 DOI: https://doi.org/10.1007/s10346-014-0497-6
Yin, Y. P. (2008). A study on geological disasters caused by Wenchuan M = 8 earthquake. Journal of Engineering Geology, 04, 433–444.
Yuan, R.-M., Deng, Q.-H., Cunningham, D., Xu, C., Xu, X.-W., & Chang, C.-P. (2013). Density distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration. Bulletin of the Seismological Society of America, 103 (4), 2344–2355. https://doi.org/10.1785/0120110233 DOI: https://doi.org/10.1785/0120110233
Yuan, X., Liu, C., Nie, R. H., Yang, Z. L., Li, W. L., Dai, X. A., Cheng, J. Y., Zhang, J. M., Ma, L., Fu, X., Tang, M., Xu, Y. N., & Lu, H. (2022). A comparative analysis of certainty factor-based machine learning methods for collapse and landslide susceptibility mapping in Wenchuan County, China. Remote Sensing, 14 (14), 3259. https://doi.org/10.3390/rs14143259 DOI: https://doi.org/10.3390/rs14143259
Zhang, P.-Z., Wen, X., Shen, Z.-K., & Chen, J. (2010). Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences, 38 (1), 353–382. https://doi.org/10.1146/annurev-earth-040809-152602 DOI: https://doi.org/10.1146/annurev-earth-040809-152602
Zhang, X., Tang, C., Li, N., Xiong, J., Chen, M., Li, M., & Tang, C. (2022). Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns. Landslides, 19 (8), 1935–1956. https://doi.org/10.1007/s10346-022-01896-6 DOI: https://doi.org/10.1007/s10346-022-01896-6
Zhang, Y. S., Guo, C. B., Yao, X., Yang, Z. H., Wu, R. A., & Du, G. L. (2016). A study on geological hazard effects of active faults on eastern margin of Qinghai-Tibet Plateau. Acta Geographica Sinica, 37 (03), 277–286.
Zhang, Y. S., Liu, X. Y., Wu, R. A., Guo, C. B., & Ren, S. S. (2021). Ancient landslide in deep valley area on eastern edge of Qinghai-Tibet Plateau: Identification, characteristics, age and evolution. Earth Science Frontiers, 28 (02), 94–105. https://doi.org/10.13745/j.esf.sf.2020.9.10
Zhuang, J., Peng, J., Xu, C., Li, Z., Densmore, A., Milledge, D., Iqbal, J., & Cui, Y. (2018). Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology, 314, 1–12. https://doi.org/10.1016/j.geomorph.2018.04.012 DOI: https://doi.org/10.1016/j.geomorph.2018.04.012
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Qinghai Deng, Lulu Xu, Liping Zhang, Ping Li, Ning Ding, Qiao Chen (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
