Improving prediction of anti-reflective film-coated photovoltaic solar panel efficiency by integrating bayesian with machine learning algorithms
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70900Palavras-chave:
Machine learning; bayesian algorithm; random forest; multi regression algorithm.Resumo
This manuscript explores machine learning models for predicting the efficiency of anti-reflective film-coated photovoltaic solar panels in the South Indian climate. Three models—standard artificial neural network (ANN), random forest algorithm, and multilinear regression—were developed and compared. 80% of the dataset was used for training and 20% for testing. The random forest model demonstrated superior effectiveness with a lower prediction error. Bayesian optimization refined both ANN and random forest models. Experiments yielded an average solar panel efficiency of 16.79%, with performance indicators (coefficient of determination) of 0.96966, 0.93466, 0.98419 and mean absolute percentage errors of 7.518, 10.658, 5.089%. Bayesian optimization improved the traditional ANN model by up to 36.2%. Random forest exhibited lower sensitivity to hyperparameters compared to ANN. Two important parameters such as coating thickness and solar insolation were identified by feature sensitivity analysis. In terms of accuracy and robustness, random forest outperformed in predicting anti-reflective film-coated photovoltaic solar panel efficiency.
Downloads
Referências
Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717-727. https://doi.org/10.1016/S0731-7085(99)00272-1
Agbulut, íœ., Gí¼rel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135, 110114. https://doi.org/10.1016/j.rser.2020.110114
Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203, 810-821. https://doi.org/10.1016/j.jclepro.2018.08.207
Akhatov, A. R., Renavikar, A., Rashidov, A. E., & Nazarov, F. M. (2017). Optimization Of The Number Of Databases In The Big Data Processing. Databases, 48, 399-420. https://doi.org/10.24412/2073-0667-2023-1-33-47
Al-Janabi, S. (2015). A novel agent-DKGBM predictor for business intelligence and analytics toward enterprise data discovery. Journal of Babylon University/Pure and Applied Sciences, 23(2), 482-507.
Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772-1778. https://doi.org/10.1016/j.eswa.2011.08.077
Arif, U., Zhang, C., Chaudhary, M. W., & Khalid, H. H. (2024). Optimizing lung cancer prediction: leveraging Kernel PCA with dendritic neural models. Computer Methods in Biomechanics and Biomedical Engineering, 2024, 1-14. https://doi.org/10.1080/10255842.2024.2374949
Attoh-Okine, N. O. (1999). Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance. Advances in Engineering Software, 30(4), 291-302. https://doi.org/10.1016/S0965-9978(98)00071-4
Bakerâ€Finch, S. C., & McIntosh, K. R. (2011). Reflection of normally incident light from silicon solar cells with pyramidal texture. Progress in Photovoltaics: Research and Applications, 19(4), 406-416. https://doi.org/10.1002/pip.1050
Banerjee, C., Mukherjee, T., & Pasiliao, E. (2020). Feature representations using the reflected rectified linear unit (RReLU) activation. Big Data Mining and Analytics, 3(2), 102-120. https://doi.org/10.26599/BDMA.2019.902002
Basheer, S., Mariyam Aysha Bivi, S., Jayakumar, S., Rathore, A., & Jeyakumar, B. (2019). Machine learning based classification of cervical cancer using k-nearest neighbour, random forest and multilayer perceptron algorithms. Journal of Computational and Theoretical Nanoscience, 16(5-6), 2523-2527. https://doi.org/10.1166/jctn.2019.7925
Berk, G., Pouya, P. N., Alireza, M., Yusuf, A., & Cagatay, B. (2022). An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning. Mechatronics, 86, 102851. https://doi.org/10.1016/j.mechatronics.2022.102851
Bian, C., Wang, X., Liu, C., Xie, X., & Haitao, L. (2021). Impact of exploration-exploitation trade-off on UCB-based Bayesian Optimization. In IOP Conference Series: Materials Science and Engineering (Vol. 1081, No. 1, p. 012023). IOP Publishing. https://doi.org/10.1088/1757-899X/1081/1/012023
Bilgili, M., & Ozgoren, M. (2011). Daily total global solar radiation modeling from several meteorological data. Meteorology and Atmospheric Physics, 112(3-4), 125-138, http://dx.doi.org/10.1007/s00703-011-0137-9
Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., & Pages, J. (2000). NIR calibration in non-linear systems: different PLS approaches and artificial neural networks. Chemometrics and Intelligent Laboratory Systems, 50(1), 75-82. https://doi.org/10.1016/S0169-7439(99)00048-9
Boluk, G., & Mert, M. (2014). Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy, 74, 439-446. https://doi.org/10.1016/j.energy.2014.07.008
Brochu, E., Brochu, T., & De Freitas, N. (2010, July). A Bayesian interactive optimization approach to procedural Animation Design. Communities and Collections, 103-112. https://doi.org/10.5555/1921427.1921443
Chang, T. C., & Chao, R. J. (2006). Application of back-propagation networks in debris flow prediction. Engineering Geology, 85(3-4), 270-280. https://doi.org/10.1016/j.enggeo.2006.02.007
Chen, T. C. T., Wu, H. C., & Chiu, M. C. (2024). A deep neural network with modified random forest incremental interpretation approach for diagnosing diabetes in smart healthcare. Applied Soft Computing, 152, 111183. https://doi.org/10.1016/j.asoc.2023.111183
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer Journal Computer Science, 7, e623-e623. https://doi.org/10.7717/peerj-cs.623
De Jong, P., Barreto, T. B., Tanajura, C. A., Kouloukoui, D., Oliveira-Esquerre, K. P., Kiperstok, A., & Torres, E. A. (2019). Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renewable energy, 141, 390-401. https://doi.org/10.1016/j.renene.2019.03.086
De´ath, G., & Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81(11), 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
Farooq, F., Nasir Amin, M., Khan, K., Rehan Sadiq, M., Javed, M. F., Aslam, F., & Alyousef, R. (2020). A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Applied Sciences, 10(20), 7330. https://doi.org/10.3390/app10207330
Foorginezhad, S., & Zerafat, M. M. (2019). Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties. Applied Surface Science, 464, 458-471. https://doi.org/10.1016/j.apsusc.2018.09.058
Ghafouri-Kesbi, F., Rahimi-Mianji, G., Honarvar, M., & Nejati-Javaremi, A. (2016). Predictive ability of random forests, boosting, support vector machines and genomic best linear unbiased prediction in different scenarios of genomic evaluation. Animal Production Science, 57(2), 229-236. https://doi.org/http://dx.doi.org/10.1071/AN15538
Goh, C., Scully, S. R., & McGehee, M. D. (2007). Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics, 101(11). https://doi.org/10.1063/1.2737977
Gwetu, M. V., Tapamo, J. R., & Viriri, S. (2014). Segmentation of retinal blood vessels using normalized Gabor filters and automatic thresholding. South African Computer Journal, 55(1), 12-24. http://dx.doi.org/10.18489/sacj.v55i0.228
Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of optimization techniques based on gradient descent algorithm: A review. PalArch's Journal of Archaeology of Egypt/Egyptology, 18(4), 2715-2743.
Hong, Y., Hou, B., Jiang, H., & Zhang, J. (2020). Machine learning and artificial neural network accelerated computational discoveries in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(3), e1450. https://doi.org/10.1002/wcms.1450
Huh, J. Y., Ma, S. H., Kim, K., Choi, E. H., Lee, H. J., Lee, H. U., & Hong, Y. C. (2019). Facile, rapid, one-pot synthesis of hydrogenated TiO2 by using an atmospheric-pressure plasma jet submerged in solution. Scripta Materialia, 162, 9-13. https://doi.org/10.1016/j.scriptamat.2018.10.028
Kulkarni, P., Sreekanth, V., Upadhya, A. R., & Gautam, H. C. (2022). Which model to choose? Performance comparison of statistical and machine learning models in predicting PM2. 5 from high-resolution satellite aerosol optical depth. Atmospheric Environment, 282, 119164. https://doi.org/10.1016/j.atmosenv.2022.119164
Laseinde, O. T., & Ramere, M. D. (2021). Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling. Procedia Computer Science, 180, 239-248. https://doi.org/10.1016/j.procs.2021.01.161
Liu, F., Tait, S., Schellart, A., Mayfield, M., & Boxall, J. (2020). Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale. Renewable and Sustainable Energy Reviews, 123, 109767, https://doi.org/10.1016/j.rser.2020.109767
Liu, H., Li, G., Cumberland, W. G., & Wu, T. (2005). Testing statistical significance of the area under a receiving operating characteristics curve for repeated measures design with bootstrapping. Journal of Data Science, 3(3), 257-278. https://doi.org/10.6339/JDS.2005.03(3).206
Machello, C., Baghaei, K. A., Bazli, M., Hadigheh, A., Rajabipour, A., Arashpour, M., & Hassanli, R. (2024). Tree-based machine learning approach to modelling tensile strength retention of Fibre Reinforced Polymer composites exposed to elevated temperatures. Composites Part B: Engineering, 270, 111132. https://doi.org/10.1016/j.compositesb.2023.111132
Mahendran, M., Lizotte, D., & Bauer, G. R. (2022). Describing intersectional health outcomes: an evaluation of data analysis methods. Epidemiology, 33(3), 395-405. https://doi.org/10.1097/ede.0000000000001466
Maind, S. B., & Wankar, P. (2014). Research paper on basic of artificial neural network. International Journal on Recent and Innovation Trends in Computing and Communication, 2(1), 96-100. https://doi.org/10.17762/ijritcc.v2i1.2920
Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140-147. https://doi.org/10.38094/jastt1457
Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15), 3301-3307. https://doi.org/10.1093/bioinformatics/bti499
Osorio, E., Urteaga, R., Acquaroli, L. N., García-Salgado, G., Juaréz, H., & Koropecki, R. R. (2011). Optimization of porous silicon multilayer as antireflection coatings for solar cells. Solar Energy Materials and Solar Cells, 95(11), 3069-3073. https://doi.org/10.1016/j.solmat.2011.06.036
Oudir, A., & Bourguig, R. (2024). Method for designing a broadband and omnidirectional hybrid antireflection coating for organic solar cells using the quarter-wavelength rule. Organic Electronics, 127, 107001. https://doi.org/10.1016/j.orgel.2024.107001
Ozkan, C., & Erbek, F. S. (2003). The comparison of activation functions for multispectral Landsat TM image classification. Photogrammetric Engineering and Remote Sensing, 69(11), 1225-1234. https://doi.org/10.14358/PERS.69.11.1225
Premalatha, N., & Valan Arasu, A. (2016). Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of Applied Research and Technology, 14(3), 206-214. https://doi.org/10.1016/j.jart.2016.05.001
Raisee, M., Kumar, D., & Lacor, C. (2015). A nonâ€intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition. International Journal for Numerical Methods in Engineering, 103(4), 293-312. https://doi.org/10.1002/nme.4900
Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd.
Sajikumar, N., & Thandaveswara, B. S. (1999). A non-linear rainfall - runoff model using an artificial neural network. Journal of Hydrology, 216(1-2), 32-55. https://doi.org/10.1016/S0022-1694(98)00273-X
Sathya, R. A., & Ponraj, C. (2024). Superhydrophobic route of fabricating antireflective, self-cleaning, and durable coatings for solar cell applications. Journal of Coatings Technology and Research, 21(1), 1-30. https://doi.org/10.1007/s11998-023-00843-x
Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with ReLU activation function. The Annals of Statistics, 48(4), 1875-1897. https://doi.org/10.1214/19-AOS1875
Song, Y., Thatcher, D., Li, Q., McHugh, T., & Wu, P. (2021). Developing sustainable road infrastructure performance indicators using a model-driven fuzzy spatial multi-criteria decision making method. Renewable and Sustainable Energy Reviews, 138, 110538. https://doi.org/10.1016/j.rser.2020.110538
Sun, X., Li, L., Xu, X., Song, G., Tu, J., Yan, P., Zhang, W., & Hu, K. (2020). Preparation of hydrophobic SiO2/PTFE sol and antireflective coatings for solar glass cover. Optik, 212, 164704. https://doi.org/10.1016/j.ijleo.2020.164704
Syafiq, A., Pandey, A. K., Adzman, N. N., & Abd Rahim, N. (2018). Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Solar Energy, 162, 597-619. https://doi.org/10.1016/j.solener.2017.12.023
Tadanaga, K., Morita, K., Mori, K., & Tatsumisago, M. (2013). Synthesis of monodispersed silica nanoparticles with high concentration by the Stí¶ber process. Journal of Sol-Gel Science and Technology, 68, 341-345. https://doi.org/10.1007/s10971-013-3175-6
Udaybhanu, G., & Reddy, V. M. (2024). A hybrid GA-ANN and correlation approach to developing a laminar burning velocity prediction model for isooctane/blends-air mixtures. Fuel, 360, 130594. https://doi.org/10.1016/j.fuel.2023.130594
Ureña-Sánchez, R., Callejón-Ferre, Í. J., Pérez-Alonso, J., & Carreño-Ortega, Í. (2012). Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels. Scientia Agricola, 69(4), 233-239. https://doi.org/10.1590/S0103-90162012000400001
Wang, Z., & Jegelka, S. (2017, July). Max-value entropy search for efficient Bayesian optimization. In International Conference on Machine Learning (pp. 3627-3635). PMLR. https://doi.org/10.48550/arXiv.1703.01968
Wang, J., Tian, Y., Qi, Z., Zeng, L., Wang, P., & Yoon, S. (2024). Sensor fault diagnosis and correction for data center cooling system using hybrid multi-label random Forest and Bayesian Inference. Building and Environment, 249, 111124. https://doi.org/10.1016/j.buildenv.2023.111124
Wei, Z. (2021). Forecasting wind waves in the US Atlantic Coast using an artificial neural network model: Towards an AI-based storm forecast system. Ocean Engineering, 237, 109646. https://doi.org/10.1016/j.oceaneng.2021.109646
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
