Assessment of heavy metal accumulation and microbial contamination and potential health risks in fruits and vegetables cultivated in the vicinity of a landfill in the central region of Brazil

Autores

  • Delson Pinto Rodrigues Filho Universidade Federal de Goiás
  • Romulo Alves Morais Universidade Federal do Tocantins
  • Glêndara Aparecida de Souza Martins Universidade Federal do Tocantins
  • Clarissa Damiani Universidade Federal de Goiás

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.71412

Palavras-chave:

Bioaccumulation. Soil nutrient management. Target hazard quotient. Health risk index. Vegetable contamination. Microbial contamination.

Resumo

The effects of growing vegetables and fruits near landfills pose a food security problem due to the accumulation of heavy metals in soils and food crops, causing potential risks to human health through the consumption of these crops. Thus, this study aimed to evaluate the content of heavy metals at four different points in the soil and food crops produced near a sanitary landfill in Porto Nacional, Brazil (central plains). The average concentrations of metals in the soil were in the order of iron > manganese > copper > nickel > zinc > cadmium, and for fruits and vegetables, in the following order: iron > manganese > zinc > copper. Notably, nickel, cadmium, chromium, and lead were not detected in any of the ten samples of vegetables (cassava and pepper) and fruits (pequi, papaya, cajá fruit, acerola, mango, guava, jackfruit, and lemon) analyzed in the present study. Regardless of the different types of vegetables, age, and gender, the EDI values ranged from Manganese (1.08 × 10?02 to 7.10 × 10?05) > Iron (2.30 × 10?02 to 7.81 × 10?04) > Zinc (1.42 × 10?03 to 7.10 × 10?04) > Copper (1.55 × 10?03 to 7.10 × 10?04). Furthermore, the results showed that children are at greater risk than adults of ingesting heavy metals according to the responses obtained by the EDI, THQ, and HRI indexes. However, the potential health risks from residual metals are considered insignificant based on the results. On the other hand, papaya, acerola, and jackfruit are not recommended for consumption due to their high microbiological contamination, mainly by E. coli and Staphylococcus.

Downloads

Não há dados estatísticos.

Referências

Alegbeleye, O. O., Singleton, I., & Sant’Ana, A. S. (2018). Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiology, 73, 177-208. https://doi.org/10.1016/j.fm.2018.01.003 DOI: https://doi.org/10.1016/j.fm.2018.01.003

Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811-815. https://doi.org/10.1016/j.foodchem.2008.04.049 DOI: https://doi.org/10.1016/j.foodchem.2008.04.049

Ashraf, A., Bibi, I., Niazi, N. K., Ok, Y. S., Murtaza, G., Shahid, M., Kunhikrishnan, A., Li, D., & & Mahmood, T. (2017). Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. International Journal of Phytoremediation, 19(7), 605-613. https://doi.org/10.1080/15226514.2016.1256372 DOI: https://doi.org/10.1080/15226514.2016.1256372

Brasil. Companhia de Tecnologia de Saneamento Ambiental [CETESB]. (2005). Decisão da Diretoria nº 195/2005, de 23/11/2005. https://cetesb.sp.gov.br/solo/wp-content/uploads/sites/18/2014/12/tabela_valores_2005.pdf

Brazil. Agência Nacional de Vigilância Sanitária. (1965). Decreto nº 55.871, de 26 de março de 1965. http://portal.anvisa.gov.br/documents/33916/391619/DECRETO%2BN%25C2%25BA%2B55.871%252C%2BDE%2B26%2BDE%2BMAR%25C3%2587O%2BDE%2B1965.pdf/59b8704c-52f4-481d-8baa-ac6edadf6490

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 DOI: https://doi.org/10.1016/j.heliyon.2020.e04691

Cai, L. M., Xu, Z. C., Qi, J. Y., Feng, Z. Z., & Xiang, T. S. (2015). Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere, 127, 127-135. https://doi.org/10.1016/j.chemosphere.2015.01.027 DOI: https://doi.org/10.1016/j.chemosphere.2015.01.027

Collin, M. S., kumar Venkataraman, S., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. S., ... & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 100094. https://doi.org/10.1016/j.hazadv.2022.100094 DOI: https://doi.org/10.1016/j.hazadv.2022.100094

Cui, S., Wang, Z., Li, X., Wang, H., Wang, H., & Chen, W. (2023). A comprehensive assessment of heavy metal (loid) contamination in leafy vegetables grown in two mining areas in Yunnan, China—A focus on bioaccumulation of cadmium in Malabar spinach. Environmental Science and Pollution Research, 30(6), 14959-14974. https://doi.org/10.1007/s11356-022-23017-5 DOI: https://doi.org/10.1007/s11356-022-23017-5

Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431-444. https://doi.org/10.1016/j.scienta.2017.12.039 DOI: https://doi.org/10.1016/j.scienta.2017.12.039

Eurostat. (2020). Waste Statistics (Europa.eu). Available in: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics

Food and Nutrition Board. (2004). Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals. Institute of Medicine, National Academies. http://www.iom.edu/Global/NewsAnnouncements/~/media/Files/ActivityFiles/Nutrition/DRIs/DRISummaryListing2.ashx

Gori, A., Ferrini, F., & Fini, A. (2019). Reprint of: Growing healthy food under heavy metal pollution load: Overview and major challenges of tree based edible landscapes. Urban Forestry & Urban Greening, 45, 126292. https://doi.org/10.1016/j.ufug.2019.02.009 DOI: https://doi.org/10.1016/j.ufug.2019.02.009

Guadie, A., Yesigat, A., Gatew, S., Worku, A., Liu, W., Ajibade, F. O., & Wang, A. (2021). Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Science of the Total Environment, 761, 143302. https://doi.org/10.1016/j.scitotenv.2020.143302 DOI: https://doi.org/10.1016/j.scitotenv.2020.143302

Guimarães, H. M., Lima, M. D., Paixão, R., & Siqueira, M. S. (2013). Características físicas e químicas do solo sob diferentes coberturas no assentamento Zé Pereira, Porto Nacional–TO. Enciclopedia Biosfera, 9(17). https://www.google.com/search?q=https://www.conhecer.org.br/enciclop/2013b/CIENCIAS%2520AGRARIAS/CARACTERISTICAS%2520FISICAS.pdf

He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855. https://doi.org/10.1016/j.envpol.2019.05.151 DOI: https://doi.org/10.1016/j.envpol.2019.05.151

Hozhabralsadat, M. S., Heidari, A., Karimian, Z., & Farzam, M. (2022). Assessment of plant species suitability in green walls based on API, heavy metal accumulation, and particulate matter capture capacity. Environmental Science and Pollution Research, 29(45), 68564-68581. https://doi.org/10.1007/s11356-022-20625-z DOI: https://doi.org/10.1007/s11356-022-20625-z

Hu, W., Chen, Y., Huang, B., & Niedermann, S. (2014). Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China. Human and Ecological Risk Assessment: An International Journal, 20(5), 1264-1280. https://doi.org/10.1080/10807039.2013.831267 DOI: https://doi.org/10.1080/10807039.2013.831267

Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215-1221. https://doi.org/10.1016/j.envpol.2011.01.037 DOI: https://doi.org/10.1016/j.envpol.2011.01.037

Hussain, M. I., & Qureshi, A. S. (2020). Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environmental Science and Pollution Research, 27, 11213-11226. https://doi.org/10.1007/s11356-019-07522-8 DOI: https://doi.org/10.1007/s11356-019-07522-8

Ji, K., Kim, J., Lee, M., Park, S., Kwon, H., Cheong, H., Jang, J., Kim, D., Yu, S., Kim, Y., Lee, K., Yang, S., Jhung, I., Yang, W., Paek, D., Hong, Y., & Choi, K. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322-328. https://doi.org/10.1016/j.envpol.2013.03.031 DOI: https://doi.org/10.1016/j.envpol.2013.03.031

Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., Wei, L., & Wang, T. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449-458. https://doi.org/10.1016/j.fct.2013.05.014 DOI: https://doi.org/10.1016/j.fct.2013.05.014

Lazo, P., Steinnes, E., Qarri, F., Allajbeu, S., Kane, S., Stafilov, T., Frontasyeva, M. V., & Harmens, H. (2018). Origin and spatial distribution of metals in moss samples in Albania: a hotspot of heavy metal contamination in Europe. Chemosphere, 190, 337-349. https://doi.org/10.1016/j.chemosphere.2017.09.132 DOI: https://doi.org/10.1016/j.chemosphere.2017.09.132

Leblebici, Z., Kar, M., & Ba?aran, L. (2020). Assessment of the heavy metal accumulation of various green vegetables grown in Nev?ehir and their risks human health. Environmental Monitoring and Assessment, 192, 1-8. https://doi.org/10.1007/s10661-020-08459-z DOI: https://doi.org/10.1007/s10661-020-08459-z

Li, Q., Chen, Y., Fu, H., Cui, Z., Shi, L., Wang, L., & Liu, Z. (2012). Health risk of heavy metals in1 food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. Journal of Hazardous Materials, 227, 148-154. https://doi.org/10.1016/j.jhazmat.2012.05.023 DOI: https://doi.org/10.1016/j.jhazmat.2012.05.023

Mahros, M. A., Abd-Elghany, S. M., & Sallam, K. I. (2021). Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern. International Journal of Food Microbiology, 346, 109165. https://doi.org/10.1016/j.ijfoodmicro.2021.109165 DOI: https://doi.org/10.1016/j.ijfoodmicro.2021.109165

Mohanty, S. S., Vyas, S., Koul, Y., Prajapati, P., Varjani, S., Chang, J. S., Bilal, M., Moustakas, K., Show, P. L., & Vithanage, M. (2023). Tricks and tracks in waste management with a special focus on municipal landfill leachate: Leads and obstacles. Science of the Total Environment, 860, 160377. https://doi.org/10.1016/j.scitotenv.2022.160377 DOI: https://doi.org/10.1016/j.scitotenv.2022.160377

Morais, R. A., Teixeira, G. L., Souza Martins, G. A., Ferreira, S. R. S., & Block, J. M. (2024). Comprehensive evaluation of the chemical profile and antioxidant potential of buritirana (Mauritiella armata) an underexplored fruit from Brazilian Cerrado. Food Research International, 179, 113945. https://doi.org/10.1016/j.foodres.2024.113945 DOI: https://doi.org/10.1016/j.foodres.2024.113945

Paj?k, M., & Pietrzykowski, M. (2021). Bioindication of Heavy Metals Contamination by Mushrooms and Mosses in Highly Industrialized Environment. Biotechnology for Sustainable Environment, 271-288. https://doi.org/10.1007/978-981-16-1955-7_11 DOI: https://doi.org/10.1007/978-981-16-1955-7_11

Pandey, R., Shubhashish, K., & Pandey, J. (2012). Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation. Ecotoxicology and Environmental Safety, 76, 200-208. https://doi.org/10.1016/j.ecoenv.2011.10.004 DOI: https://doi.org/10.1016/j.ecoenv.2011.10.004

Qureshi, A. S., Hussain, M. I., Ismail, S., & Khan, Q. M. (2016). Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 163, 54-61. https://doi.org/10.1016/j.chemosphere.2016.07.073 DOI: https://doi.org/10.1016/j.chemosphere.2016.07.073

Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K., Ng, H. S., Munawaroh, H. S. H., Karaman, C., Orooji, Y., & Show, P. L. (2022). Uma revisão crítica sobre várias abordagens de remediação para remoção de contaminantes de metais pesados de solos contaminados [A critical review on various remediation approaches for removing heavy metal contaminants from contaminated soils]. Chemosphere, 287, 132369. https://doi.org/10.1016/j.chemosphere.2021.132369 DOI: https://doi.org/10.1016/j.chemosphere.2021.132369

Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234 DOI: https://doi.org/10.1002/jcb.26234

Rolfe, C., & Daryaei, H. (2020). Intrinsic and extrinsic factors affecting microbial growth in food systems. In Food Safety Engineering (pp. 3-24). https://doi.org/10.1007/978-3-030-42660-6_1 DOI: https://doi.org/10.1007/978-3-030-42660-6_1

Santos, E. E., Lauria, D. C., & Da Silveira, C. P. (2004). Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Science of the Total Environment, 327(1-3), 69-79. https://doi.org/10.1016/j.scitotenv.2004.01.016 DOI: https://doi.org/10.1016/j.scitotenv.2004.01.016

Shahid, M., Dumat, C., Aslam, M., & Pinelli, E. (2012). Assessment of lead speciation by organic ligands using speciation models. Chemical Speciation & Bioavailability, 24(4), 248-252. https://doi.org/10.3184/095422912X13495331697627 DOI: https://doi.org/10.3184/095422912X13495331697627

Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063 DOI: https://doi.org/10.1016/j.jhazmat.2016.11.063

Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66-105. https://doi.org/10.1080/10408398.2020.1812048 DOI: https://doi.org/10.1080/10408398.2020.1812048

Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 755, 142367. https://www.google.com/search?q=https://doi.org/10.1016/j.scitotenv.2020.1423 DOI: https://doi.org/10.1016/j.scitotenv.2020.142367

Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), 58514-58536. https://doi.org/10.1007/s11356-022-21578-z DOI: https://doi.org/10.1007/s11356-022-21578-z

Singh, N. S., Sharma, R., Parween, T., & Patanjali, P. K. (2018). Pesticide contamination and human health risk factor. In Modern age environmental problems and their remediation (pp. 49-68). https://doi.org/10.1007/978-3-319-64501-8_3 DOI: https://doi.org/10.1007/978-3-319-64501-8_3

Sousa, H. M. S., Leal, G. F., Silva Gualberto, L., Freitas, B. C. B., Guarda, P. M., Borges, S. V., Morais, R. A., Souza, M., & Glêndara A. (2023). Exploration of the chemical characteristics and bioactive and antioxidant potential of tucumã (Astrocaryum vulgare), peach palm (Bactris gasipaes), and bacupari (Garcinia gardneriana) native Brazilian fruits. Biomass Conversion and Biorefinery, 1-14. https://doi.org/10.1007/s13399-023-05145-1 DOI: https://doi.org/10.1007/s13399-023-05145-1

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017).1 Manual de métodos de análise de solo. Available in: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/194786/1/Pt-5-Cap-1-Micromorfologia-do-solo.pdf

Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. J. E. I. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299-309. https://doi.org/10.1016/j.envint.2015.12.017 DOI: https://doi.org/10.1016/j.envint.2015.12.017

Uddin, M. M., Zakeel, M. C. M., Zavahir, J. S., Marikar, F. M., & Jahan, I. (2021).2 Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics, 9(12), 360. https://doi.org/10.3390/toxics9120360 DOI: https://doi.org/10.3390/toxics9120360

USEPA. (2006). USEPA region III risk-based concentration table: technical background information. Unites States Environmental Protection Agency, Washington. https://semspub.epa.gov/work/05/229825.pdf

Wang, Y., Luo, C., Li, J., Yin, H., & Zhang, G. (2014). Influence of plants on the distribution and composition of PBDEs in soils of an e-waste dismantling area: evidence of the effect of the rhizosphere and selective bioaccumulation. Environmental Pollution, 186, 104-109. https://doi.org/10.1016/j.envpol.2013.11.018 DOI: https://doi.org/10.1016/j.envpol.2013.11.018

Weber, A. M., Mawodza, T., Sarkar, B., & Menon, M. (2019). Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England. Ecotoxicology and Environmental Safety, 170, 156-165. https://doi.org/10.1016/j.ecoenv.2018.11.090 DOI: https://doi.org/10.1016/j.ecoenv.2018.11.090

World Health Organization [WHO]. (1998). Quality control methods for medicinal plant materials. World Health Organization.

Yaashikaa, P. R., Kumar, P. S., Nhung, T. C., Hemavathy, R. V., Jawahar, M. J., Neshaanthini, J. P., & Rangasamy, G. (2022). A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 136627. https://doi.org/10.1016/j.chemosphere.2022.136627 DOI: https://doi.org/10.1016/j.chemosphere.2022.136627

Yang, L., Ren, Q., Zheng, K., Jiao, Z., Ruan, X., & Wang, Y. (2022). Migration of heavy metals in the soil-grape system and potential health risk assessment. Science of the Total Environment, 806, 150646. https://doi.org/10.1016/j.scitotenv.2021.150646 DOI: https://doi.org/10.1016/j.scitotenv.2021.150646

Yang, Q. W., Xu, Y., Liu, S. J., He, J. F., & Long, F. Y. (2011). Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicology and Environmental Safety, 74(6), 1664-1669. https://doi.org/10.1016/j.ecoenv.2011.05.006 DOI: https://doi.org/10.1016/j.ecoenv.2011.05.006

Downloads

Publicado

2025-06-17

Como Citar

Rodrigues Filho, D. P. . ., Morais, R. A. ., Martins, G. A. de S., & Damiani, C. . (2025). Assessment of heavy metal accumulation and microbial contamination and potential health risks in fruits and vegetables cultivated in the vicinity of a landfill in the central region of Brazil. Acta Scientiarum. Technology, 47(1), e71412. https://doi.org/10.4025/actascitechnol.v47i1.71412

Edição

Seção

Ciência, Tecnologia de Alimentos e Engenharia de Alimentos

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus