Assessment of heavy metal accumulation and microbial contamination and potential health risks in fruits and vegetables cultivated in the vicinity of a landfill in the central region of Brazil
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.71412Palavras-chave:
Bioaccumulation. Soil nutrient management. Target hazard quotient. Health risk index. Vegetable contamination. Microbial contamination.Resumo
The effects of growing vegetables and fruits near landfills pose a food security problem due to the accumulation of heavy metals in soils and food crops, causing potential risks to human health through the consumption of these crops. Thus, this study aimed to evaluate the content of heavy metals at four different points in the soil and food crops produced near a sanitary landfill in Porto Nacional, Brazil (central plains). The average concentrations of metals in the soil were in the order of iron > manganese > copper > nickel > zinc > cadmium, and for fruits and vegetables, in the following order: iron > manganese > zinc > copper. Notably, nickel, cadmium, chromium, and lead were not detected in any of the ten samples of vegetables (cassava and pepper) and fruits (pequi, papaya, cajá fruit, acerola, mango, guava, jackfruit, and lemon) analyzed in the present study. Regardless of the different types of vegetables, age, and gender, the EDI values ranged from Manganese (1.08 × 10?02 to 7.10 × 10?05) > Iron (2.30 × 10?02 to 7.81 × 10?04) > Zinc (1.42 × 10?03 to 7.10 × 10?04) > Copper (1.55 × 10?03 to 7.10 × 10?04). Furthermore, the results showed that children are at greater risk than adults of ingesting heavy metals according to the responses obtained by the EDI, THQ, and HRI indexes. However, the potential health risks from residual metals are considered insignificant based on the results. On the other hand, papaya, acerola, and jackfruit are not recommended for consumption due to their high microbiological contamination, mainly by E. coli and Staphylococcus.
Downloads
Referências
Alegbeleye, O. O., Singleton, I., & Sant’Ana, A. S. (2018). Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiology, 73, 177-208. https://doi.org/10.1016/j.fm.2018.01.003 DOI: https://doi.org/10.1016/j.fm.2018.01.003
Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811-815. https://doi.org/10.1016/j.foodchem.2008.04.049 DOI: https://doi.org/10.1016/j.foodchem.2008.04.049
Ashraf, A., Bibi, I., Niazi, N. K., Ok, Y. S., Murtaza, G., Shahid, M., Kunhikrishnan, A., Li, D., & & Mahmood, T. (2017). Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. International Journal of Phytoremediation, 19(7), 605-613. https://doi.org/10.1080/15226514.2016.1256372 DOI: https://doi.org/10.1080/15226514.2016.1256372
Brasil. Companhia de Tecnologia de Saneamento Ambiental [CETESB]. (2005). Decisão da Diretoria nº 195/2005, de 23/11/2005. https://cetesb.sp.gov.br/solo/wp-content/uploads/sites/18/2014/12/tabela_valores_2005.pdf
Brazil. Agência Nacional de Vigilância Sanitária. (1965). Decreto nº 55.871, de 26 de março de 1965. http://portal.anvisa.gov.br/documents/33916/391619/DECRETO%2BN%25C2%25BA%2B55.871%252C%2BDE%2B26%2BDE%2BMAR%25C3%2587O%2BDE%2B1965.pdf/59b8704c-52f4-481d-8baa-ac6edadf6490
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 DOI: https://doi.org/10.1016/j.heliyon.2020.e04691
Cai, L. M., Xu, Z. C., Qi, J. Y., Feng, Z. Z., & Xiang, T. S. (2015). Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere, 127, 127-135. https://doi.org/10.1016/j.chemosphere.2015.01.027 DOI: https://doi.org/10.1016/j.chemosphere.2015.01.027
Collin, M. S., kumar Venkataraman, S., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. S., ... & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 100094. https://doi.org/10.1016/j.hazadv.2022.100094 DOI: https://doi.org/10.1016/j.hazadv.2022.100094
Cui, S., Wang, Z., Li, X., Wang, H., Wang, H., & Chen, W. (2023). A comprehensive assessment of heavy metal (loid) contamination in leafy vegetables grown in two mining areas in Yunnan, China—A focus on bioaccumulation of cadmium in Malabar spinach. Environmental Science and Pollution Research, 30(6), 14959-14974. https://doi.org/10.1007/s11356-022-23017-5 DOI: https://doi.org/10.1007/s11356-022-23017-5
Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431-444. https://doi.org/10.1016/j.scienta.2017.12.039 DOI: https://doi.org/10.1016/j.scienta.2017.12.039
Eurostat. (2020). Waste Statistics (Europa.eu). Available in: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics
Food and Nutrition Board. (2004). Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals. Institute of Medicine, National Academies. http://www.iom.edu/Global/NewsAnnouncements/~/media/Files/ActivityFiles/Nutrition/DRIs/DRISummaryListing2.ashx
Gori, A., Ferrini, F., & Fini, A. (2019). Reprint of: Growing healthy food under heavy metal pollution load: Overview and major challenges of tree based edible landscapes. Urban Forestry & Urban Greening, 45, 126292. https://doi.org/10.1016/j.ufug.2019.02.009 DOI: https://doi.org/10.1016/j.ufug.2019.02.009
Guadie, A., Yesigat, A., Gatew, S., Worku, A., Liu, W., Ajibade, F. O., & Wang, A. (2021). Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Science of the Total Environment, 761, 143302. https://doi.org/10.1016/j.scitotenv.2020.143302 DOI: https://doi.org/10.1016/j.scitotenv.2020.143302
Guimarães, H. M., Lima, M. D., Paixão, R., & Siqueira, M. S. (2013). Características físicas e químicas do solo sob diferentes coberturas no assentamento Zé Pereira, Porto Nacional–TO. Enciclopedia Biosfera, 9(17). https://www.google.com/search?q=https://www.conhecer.org.br/enciclop/2013b/CIENCIAS%2520AGRARIAS/CARACTERISTICAS%2520FISICAS.pdf
He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855. https://doi.org/10.1016/j.envpol.2019.05.151 DOI: https://doi.org/10.1016/j.envpol.2019.05.151
Hozhabralsadat, M. S., Heidari, A., Karimian, Z., & Farzam, M. (2022). Assessment of plant species suitability in green walls based on API, heavy metal accumulation, and particulate matter capture capacity. Environmental Science and Pollution Research, 29(45), 68564-68581. https://doi.org/10.1007/s11356-022-20625-z DOI: https://doi.org/10.1007/s11356-022-20625-z
Hu, W., Chen, Y., Huang, B., & Niedermann, S. (2014). Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China. Human and Ecological Risk Assessment: An International Journal, 20(5), 1264-1280. https://doi.org/10.1080/10807039.2013.831267 DOI: https://doi.org/10.1080/10807039.2013.831267
Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215-1221. https://doi.org/10.1016/j.envpol.2011.01.037 DOI: https://doi.org/10.1016/j.envpol.2011.01.037
Hussain, M. I., & Qureshi, A. S. (2020). Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environmental Science and Pollution Research, 27, 11213-11226. https://doi.org/10.1007/s11356-019-07522-8 DOI: https://doi.org/10.1007/s11356-019-07522-8
Ji, K., Kim, J., Lee, M., Park, S., Kwon, H., Cheong, H., Jang, J., Kim, D., Yu, S., Kim, Y., Lee, K., Yang, S., Jhung, I., Yang, W., Paek, D., Hong, Y., & Choi, K. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322-328. https://doi.org/10.1016/j.envpol.2013.03.031 DOI: https://doi.org/10.1016/j.envpol.2013.03.031
Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., Wei, L., & Wang, T. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449-458. https://doi.org/10.1016/j.fct.2013.05.014 DOI: https://doi.org/10.1016/j.fct.2013.05.014
Lazo, P., Steinnes, E., Qarri, F., Allajbeu, S., Kane, S., Stafilov, T., Frontasyeva, M. V., & Harmens, H. (2018). Origin and spatial distribution of metals in moss samples in Albania: a hotspot of heavy metal contamination in Europe. Chemosphere, 190, 337-349. https://doi.org/10.1016/j.chemosphere.2017.09.132 DOI: https://doi.org/10.1016/j.chemosphere.2017.09.132
Leblebici, Z., Kar, M., & Ba?aran, L. (2020). Assessment of the heavy metal accumulation of various green vegetables grown in Nev?ehir and their risks human health. Environmental Monitoring and Assessment, 192, 1-8. https://doi.org/10.1007/s10661-020-08459-z DOI: https://doi.org/10.1007/s10661-020-08459-z
Li, Q., Chen, Y., Fu, H., Cui, Z., Shi, L., Wang, L., & Liu, Z. (2012). Health risk of heavy metals in1 food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. Journal of Hazardous Materials, 227, 148-154. https://doi.org/10.1016/j.jhazmat.2012.05.023 DOI: https://doi.org/10.1016/j.jhazmat.2012.05.023
Mahros, M. A., Abd-Elghany, S. M., & Sallam, K. I. (2021). Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern. International Journal of Food Microbiology, 346, 109165. https://doi.org/10.1016/j.ijfoodmicro.2021.109165 DOI: https://doi.org/10.1016/j.ijfoodmicro.2021.109165
Mohanty, S. S., Vyas, S., Koul, Y., Prajapati, P., Varjani, S., Chang, J. S., Bilal, M., Moustakas, K., Show, P. L., & Vithanage, M. (2023). Tricks and tracks in waste management with a special focus on municipal landfill leachate: Leads and obstacles. Science of the Total Environment, 860, 160377. https://doi.org/10.1016/j.scitotenv.2022.160377 DOI: https://doi.org/10.1016/j.scitotenv.2022.160377
Morais, R. A., Teixeira, G. L., Souza Martins, G. A., Ferreira, S. R. S., & Block, J. M. (2024). Comprehensive evaluation of the chemical profile and antioxidant potential of buritirana (Mauritiella armata) an underexplored fruit from Brazilian Cerrado. Food Research International, 179, 113945. https://doi.org/10.1016/j.foodres.2024.113945 DOI: https://doi.org/10.1016/j.foodres.2024.113945
Paj?k, M., & Pietrzykowski, M. (2021). Bioindication of Heavy Metals Contamination by Mushrooms and Mosses in Highly Industrialized Environment. Biotechnology for Sustainable Environment, 271-288. https://doi.org/10.1007/978-981-16-1955-7_11 DOI: https://doi.org/10.1007/978-981-16-1955-7_11
Pandey, R., Shubhashish, K., & Pandey, J. (2012). Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation. Ecotoxicology and Environmental Safety, 76, 200-208. https://doi.org/10.1016/j.ecoenv.2011.10.004 DOI: https://doi.org/10.1016/j.ecoenv.2011.10.004
Qureshi, A. S., Hussain, M. I., Ismail, S., & Khan, Q. M. (2016). Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 163, 54-61. https://doi.org/10.1016/j.chemosphere.2016.07.073 DOI: https://doi.org/10.1016/j.chemosphere.2016.07.073
Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K., Ng, H. S., Munawaroh, H. S. H., Karaman, C., Orooji, Y., & Show, P. L. (2022). Uma revisão crítica sobre várias abordagens de remediação para remoção de contaminantes de metais pesados de solos contaminados [A critical review on various remediation approaches for removing heavy metal contaminants from contaminated soils]. Chemosphere, 287, 132369. https://doi.org/10.1016/j.chemosphere.2021.132369 DOI: https://doi.org/10.1016/j.chemosphere.2021.132369
Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234 DOI: https://doi.org/10.1002/jcb.26234
Rolfe, C., & Daryaei, H. (2020). Intrinsic and extrinsic factors affecting microbial growth in food systems. In Food Safety Engineering (pp. 3-24). https://doi.org/10.1007/978-3-030-42660-6_1 DOI: https://doi.org/10.1007/978-3-030-42660-6_1
Santos, E. E., Lauria, D. C., & Da Silveira, C. P. (2004). Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Science of the Total Environment, 327(1-3), 69-79. https://doi.org/10.1016/j.scitotenv.2004.01.016 DOI: https://doi.org/10.1016/j.scitotenv.2004.01.016
Shahid, M., Dumat, C., Aslam, M., & Pinelli, E. (2012). Assessment of lead speciation by organic ligands using speciation models. Chemical Speciation & Bioavailability, 24(4), 248-252. https://doi.org/10.3184/095422912X13495331697627 DOI: https://doi.org/10.3184/095422912X13495331697627
Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063 DOI: https://doi.org/10.1016/j.jhazmat.2016.11.063
Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66-105. https://doi.org/10.1080/10408398.2020.1812048 DOI: https://doi.org/10.1080/10408398.2020.1812048
Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 755, 142367. https://www.google.com/search?q=https://doi.org/10.1016/j.scitotenv.2020.1423 DOI: https://doi.org/10.1016/j.scitotenv.2020.142367
Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), 58514-58536. https://doi.org/10.1007/s11356-022-21578-z DOI: https://doi.org/10.1007/s11356-022-21578-z
Singh, N. S., Sharma, R., Parween, T., & Patanjali, P. K. (2018). Pesticide contamination and human health risk factor. In Modern age environmental problems and their remediation (pp. 49-68). https://doi.org/10.1007/978-3-319-64501-8_3 DOI: https://doi.org/10.1007/978-3-319-64501-8_3
Sousa, H. M. S., Leal, G. F., Silva Gualberto, L., Freitas, B. C. B., Guarda, P. M., Borges, S. V., Morais, R. A., Souza, M., & Glêndara A. (2023). Exploration of the chemical characteristics and bioactive and antioxidant potential of tucumã (Astrocaryum vulgare), peach palm (Bactris gasipaes), and bacupari (Garcinia gardneriana) native Brazilian fruits. Biomass Conversion and Biorefinery, 1-14. https://doi.org/10.1007/s13399-023-05145-1 DOI: https://doi.org/10.1007/s13399-023-05145-1
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017).1 Manual de métodos de análise de solo. Available in: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/194786/1/Pt-5-Cap-1-Micromorfologia-do-solo.pdf
Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. J. E. I. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299-309. https://doi.org/10.1016/j.envint.2015.12.017 DOI: https://doi.org/10.1016/j.envint.2015.12.017
Uddin, M. M., Zakeel, M. C. M., Zavahir, J. S., Marikar, F. M., & Jahan, I. (2021).2 Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics, 9(12), 360. https://doi.org/10.3390/toxics9120360 DOI: https://doi.org/10.3390/toxics9120360
USEPA. (2006). USEPA region III risk-based concentration table: technical background information. Unites States Environmental Protection Agency, Washington. https://semspub.epa.gov/work/05/229825.pdf
Wang, Y., Luo, C., Li, J., Yin, H., & Zhang, G. (2014). Influence of plants on the distribution and composition of PBDEs in soils of an e-waste dismantling area: evidence of the effect of the rhizosphere and selective bioaccumulation. Environmental Pollution, 186, 104-109. https://doi.org/10.1016/j.envpol.2013.11.018 DOI: https://doi.org/10.1016/j.envpol.2013.11.018
Weber, A. M., Mawodza, T., Sarkar, B., & Menon, M. (2019). Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England. Ecotoxicology and Environmental Safety, 170, 156-165. https://doi.org/10.1016/j.ecoenv.2018.11.090 DOI: https://doi.org/10.1016/j.ecoenv.2018.11.090
World Health Organization [WHO]. (1998). Quality control methods for medicinal plant materials. World Health Organization.
Yaashikaa, P. R., Kumar, P. S., Nhung, T. C., Hemavathy, R. V., Jawahar, M. J., Neshaanthini, J. P., & Rangasamy, G. (2022). A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 136627. https://doi.org/10.1016/j.chemosphere.2022.136627 DOI: https://doi.org/10.1016/j.chemosphere.2022.136627
Yang, L., Ren, Q., Zheng, K., Jiao, Z., Ruan, X., & Wang, Y. (2022). Migration of heavy metals in the soil-grape system and potential health risk assessment. Science of the Total Environment, 806, 150646. https://doi.org/10.1016/j.scitotenv.2021.150646 DOI: https://doi.org/10.1016/j.scitotenv.2021.150646
Yang, Q. W., Xu, Y., Liu, S. J., He, J. F., & Long, F. Y. (2011). Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicology and Environmental Safety, 74(6), 1664-1669. https://doi.org/10.1016/j.ecoenv.2011.05.006 DOI: https://doi.org/10.1016/j.ecoenv.2011.05.006
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Delson Pinto Rodrigues Filho, Romulo Alves Morais, Glêndara Aparecida de Souza Martins, Clarissa Damiani (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
