Dynamics and control of an energy harvesting system using the Lyapunov-Floquet transformation and sensitivity analysis using Sobol indices

Authors

DOI:

https://doi.org/10.4025/actascitechnol.v48i1.71579

Keywords:

: Stability analysis; global sensitivity analysis; lyapunov-floquet transformation; linear feedback control.

Abstract

This study aimed to design a linear feedback control approach for a parametrically excited energy harvesting system utilizing a piezoelectric material as the transduction element. The purpose was to significantly increase the amount of energy produced compared to that produced by the original system. To do so, firstly, it is necessary to analyze the stability of the system and perform a global sensitivity analysis to determine the physical parameters of the system that most contribute to energy production. The sensitivity analysis is done by calculating the Sobol indices, which are statistical indices that measure the relative contribution of each input variable (in this case, the physical parameters of the system) to the contribution of all input variables. In the stability analysis, the state transition matrix approximation techniques created by Sinha and Butcher and the results of the Floquet Theory for periodic systems were used. Stability analysis and global sensitivity analysis are methodologically complementary techniques for a better understanding of the dynamics of a system. In the case of this work, they are applied to an energy-harvesting system based on mechanical vibrations, providing important information to design a more efficient controller. The control technique used was proposed by Sinha and Butcher (1997), and is known as Linear Feedback Controller Design via the Lyapunov-Floquet Transform.

Downloads

Download data is not yet available.

References

Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., & Nouet, P. (2010). Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering, 20(12), 125020. https://doi.org/10.1088/0960-1317/20/12/125020

Andrade, E. X. L., Bracciali, C. F., & Rafaeli, F. R. (2012). Introdução aos Polinômios Ortogonais. Sociedade Brasileira de Matemática Aplicada e Computacional.

Bhat, L. A., Mishra, L. N., Mishra, V. N., Tunc, C., & Tunc, O. (2024). Precision and efficiency of an interpolation approach to weakly singular integral equations. International Journal of Numerical Methods for Heat & Fluid Flow, 34(3), 1479-1499. https://doi.org/10.1108/HFF-09-2023-0553

Butcher, E. A., & Sinha, S. C. (1998). Symbolic computation of local stability and bifurcation surfaces for nonlinear time-periodic systems. Nonlinear Dynamics, 17, 1-21. https://doi.org/10.1023/A:1008284325276

Cacuci, D. G. (2003). Sensitivity and uncertainty analysis: Theory (Vol. 1). Chapman & Hall/CRC.

Cauz, L. O., Chavarette, F. R., & Almeida, E. F. (2023). Global sensitivity and stability analysis of a parametrically excited energy harvesting system. Journal of Vibration Testing and System Dynamics, 7, 253-263. https://doi.org/10.5890/JVTSD.2023.09.001

Challa, V. R., Prasad, M. G., Shi, Y., & Fisher, F. T. (2008). A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 17(1), 015035. https://doi.org/10.1088/0964-1726/17/01/015035

Daqaq, M. F., Stabler, C., Qaroush, Y., & Seuaciuc-Osório, T. (2009). Investigation of power harvesting via parametric excitations. Journal of Intelligent Material Systems and Structures, 20, 545-557. https://doi.org/10.1177/1045389X08100978

David, A., & Sinha, S. C. (2000, June). Control of chaos in nonlinear systems with time-periodic coefficients. In Proceedings of the American Control Conference (pp. 764–768). IEEE.

Eichhorn, C., Goldschmidtboeing, F., Porro, Y., & Woias, P. (2009r). A piezoelectric harvester with an integrated frequency-tuning mechanism. In Proceedings of Power MEMS 2009 (pp. 45–48). https://www.researchgate.net/publication/228514136

Iakubovich, V. A., & Starzhinskii, V. M. (1975). Linear differential equations with periodic coefficients. John Wiley.

Meirovitch, L. (1970). Methods of Analytical Dynamics. McGraw-Hill.

Meirovitch, L. (2010). Methods of Analytical Dynamics. Courier Corporation.

Monteiro, L. H. A. (2011). Sistemas Dinâmicos. Editora Livraria da Física.

Naifeh, A. H., & Balachandran, B. (1995). Applied Nonlinear Dynamics. John Wiley.

Norenberg, J. P., Cunha Jr, A., Silva, S., & Varoto, P. S. (2022). Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dynamics, 109(2), 443-458. https://doi.org/10.1007/s11071-022-07563-8

Outa, R., Chavarette, F. R., Gonçalves, A. C., da Silva, S. L., Mishra, V. N., Panosso, A. R., & Mishra, L. N. (2021). Reliability analysis using experimental statistical methods and AIS: application in continuous flow tubes of gaseous medium. Acta Scientiarum. Technology, 43(1), 1-19. https://doi.org/10.4025/actascitechnol.v43i1.55825

Rathour, L., Singh, V., Yadav, H., Sharma, M. K., & Mishra, V. N. (2024). A dual Hesitant Fuzzy set theoretic approach in Fuzzy reliability analysis of a Fuzzy system. Inf. Sci. Lett., 13(2), 433-440. https://doi.org/10.18576/isl/130219

Sharma, A., & Sinha, S. C. (2018). An approximate analysis of quasi-periodic systems via Floquet theory. Journal of Computational and Nonlinear Dynamics, 13, 1-18. https://doi.org/10.1115/1.4037797

Sharma, M. K., Dhiman, N., Kumar, S., Rathour, L., & Mishra, V. N. (2023). Neutrosophic Monte Carlo Simulation approach for decision making in medical diagnostic process under uncertain environment. International Journal of Neutrosophic Science, 22(1), 8-16. https://doi.org/10.54216/IJNS.220101

Sharma, M. K., Sadhna, C., Bhargava, A. K., Kumar, S., Rathour, L., Mishra, L. N., & Pandey, S. (2022). A fermatean fuzzy ranking function in optimization of intuitionistic fuzzy transportation problems. Advanced Mathematical Models & Applications, 7(2), 191-204.

Sinha, S. C., & Butcher, E. A. (1997). Symbolic computation of fundamental solution matrices for linear time-periodic dynamical systems. Journal of Sound and Vibration, 206, 61-85. https://doi.org/10.1006/jsvi.1997.1079

Sinha, S. C., & Dávid, A. (2006). Control of chaos in nonlinear systems with time-periodic coefficients. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 2417-2432. https://doi.org/10.1098/rsta.2006.1832

Sinha, S. C., Henrichs, J. T., & Ravindra, B. (2000). A general approach in the design of active controllers for nonlinear systems exhibiting chaos. International Journal of Bifurcation and Chaos, 10, 165-178. https://doi.org/10.1142/S0218127400000104

Sinha, S. C., & Joseph, P. (1994). Control of general dynamic systems with periodically varying parameters via Liapunov-Floquet transformation. ASME. Journal of Dynamic Systems, Measurement, and Control, 116(4), 650-658. https://doi.org/10.1115/1.2899264

Soize, C. (2017). Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering (Vol. 1). Springer.

Sohn, J. W., Choi, S. B., & Lee, D. Y. (2005). An investigation on piezoelectric energy harvesting for MEMS power sources. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219, 429-436. https://doi.org/10.1243/095440605X16947

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964–979. https://doi.org/10.1016/j.ress.2007.04.002

Zhu, D. (2011). Vibration energy harvesting: machinery vibration, human movement, and flow induced vibration. In Sustainable Energy Harvesting Technologies-Past, Present and Future (pp. 22–54). InTech. https://doi.org/10.5772/25731

Downloads

Published

2025-11-10

How to Cite

Cauz, L. O., Chavarette, F. R. ., Mishra, L. N., & Rathour, L. (2025). Dynamics and control of an energy harvesting system using the Lyapunov-Floquet transformation and sensitivity analysis using Sobol indices. Acta Scientiarum. Technology, 48(1), e71579. https://doi.org/10.4025/actascitechnol.v48i1.71579

Issue

Section

Electrical Engineering

Most read articles by the same author(s)