Physiological and biochemical changes during desiccation tolerance loss in millet (<i>Pennisetum glaucum</i> L.) seeds

  • Joana Souza Fernandes Universidade Federal de Lavras http://orcid.org/0000-0003-4404-5254
  • Renato Mendes Guimarães Universidade Federal de Lavras
  • Jose Marcio Rocha Faria Universidade Federal de Lavras
  • Diego de Sousa Pereira Universidade Federal de Lavras
  • Stefania Vilas Boas Coelho Universidade Federal de Lavras
  • Ariadne Santos Oliveira Universidade Federal de Lavras
Keywords: desiccation sensitivity, germination, proteins, enzymes.

Abstract

The aim of this study was to evaluate the physiological and biochemical changes related to desiccation tolerance loss in millet seeds. The studied points of the germination process were determined according to the seed imbibition curve of the millet hybrid ADRF6010: control (0h), 3h of imbibition, 1 and 3 mm radicle. The seeds were dried on silica gel for 72h at 20°C, followed by pre-humidification at 25°C for 24h. Seed physiological quality was evaluated by electrical conductivity and a germination test, and seed vigor was evaluated with a first germination count and a germination speed index. The experiment was performed in a completely randomized design, and means were compared by the Scott-Knott test at a 5% probability. The enzymatic systems of superoxide dismutase, catalase, peroxidase, and α-amylase, as well as the expression of heat-resistant proteins were evaluated. Enzymatic activity was quantified with the ImageJ® software. Millet seeds lost desiccation tolerance when the radicle reached 1 mm in length. According to enzymatic standards, peroxidase and α-amylase activity, as well as heat-resistant protein activity, were related to desiccation tolerance loss in millet seeds.

Downloads

Download data is not yet available.

Author Biographies

Joana Souza Fernandes, Universidade Federal de Lavras
PhD Student at Universidade Federal de Lavras.
Renato Mendes Guimarães, Universidade Federal de Lavras
Professor at Agriculture Department of Universidade Federal de Lavras.
Jose Marcio Rocha Faria, Universidade Federal de Lavras
Professor at Forest Science Department at Universidade Federal de Lavras.
Diego de Sousa Pereira, Universidade Federal de Lavras
PhD in Crop Production at Universidade Federal de Lavras.
Stefania Vilas Boas Coelho, Universidade Federal de Lavras
PhD student at Universidade Federal de Lavras.
Ariadne Santos Oliveira, Universidade Federal de Lavras
PhD in Crop Production at Universidade Federal de Lavras.

References

Abreu, L. A. d S., Veiga, A. D., Von Pinho, É. V. d. R., Monteiro, F. F., & Rosa, S. D. V. F. d. (2014). Behavior of coffee seeds to desiccation tolerance and storage. Journal of Seed Science, 36(4), 399–406. DOI: 10.1590/2317-1545v36n41008

Abreu, V. M., Silva Neta, I. C., Von Pinho, E. V. R., Naves, G. M. F., Guimarães, R. M., Santos, H. O., & Von Pinho, R. G. (2016). Heat-resistant protein expression during germination of maize seeds under water stress. Genetics and Molecular Research, 15(3), 1-8. DOI: 10.4238/gmr.15038535

Alfenas, A. C. (2006). Eletroforese e marcadores bioquímicos em plantas e microorganismos (2nd ed.). Viçosa, MG: UFV.

Angelovici, R., Galili, G., Fernie, A. R., & Fait, A. (2010). Seed desiccation: a bridge between maturation and germination. Trends in Plant Science, 15(4), 211–218. DOI: 10.1016/j.tplants.2010.01.003

Berjak, P., & Pammenter, N. W. (2008). From Avicennia to Zizania: Seed recalcitrance in perspective. Annals of Botany, 101(2), 213–228. DOI: 10.1093/aob/mcm168

Berjak, P., Farrant, J. M., & Pammenter, N. W. (2008). Seed Desiccation-Tolerance Mechanisms. In M. A. Jenks & A. J. Wood (Eds.), Plant Desiccation Tolerance (p. 151–192). Oxford, UK: Blackwell Publishing Ltd. DOI: 10.1002/9780470376881.ch6

Bewley, J. D. (1997). Seed Germination and dormancy. The Plant Cell Online, 9(7), 1055–1066. DOI: 10.1105/tpc.9.7.1055

Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy. New York, NY: Springer. DOI: 10.1007/978-1-4614-4693-4

Bolouri-Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. FEBS Journal, 277(9), 2022–2037. DOI: 10.1111/j.1742-4658.2010.07633.x

Boswell, L. C., Moore, D. S., & Hand, S. C. (2014). Quantification of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress and Chaperones, 19(3), 329–341. DOI: 10.1007/s12192-013-0458-3

Boudet, J., Buitink, J., Hoekstra, F. A., Rogniaux, H., Larré, C., Satour, P., & Leprince, O. (2006). Comparative Analysis of the Heat Stable Proteome of Radicles of Medicago truncatula Seeds during Germination Identifies Late Embryogenesis Abundant Proteins Associated with Desiccation Tolerance. Plant Physiology, 140(4), 1418–1436. DOI: 10.1104/pp.105.074039

Brasil. Ministério da Agricultura e Reforma Agrária. (2009). Regras para análise de sementes. Brasília, DF: SNDA/DNDV/CLAV.

Coelho, S. V. B., Figueiredo, M. A. d., Clemente, A. d. C. S., Coelho, L. F. S., & Rosa, S. D. V. F. d. (2015). Alterações fisiológicas e bioquímicas em sementes de café secas em sílica gel e soluções salinas saturadas. Pesquisa Agropecuária Brasileira, 50(6), 483–491. DOI: 10.1590/S0100-204X2015000600007

Crowe, J. H., Crowe, L. M., & Hoekstra, F. A. (1989). Phase transitions and permeability changes in dry membranes during rehydration. Journal of Bioenergetics and Biomembranes, 21(1), 77–91. DOI: 10.1007/BF00762213

Daws, M. I., Bolton, S., Burslem, D. F. R. P., Garwood, N. C., & Mullins, C. E. (2007). Loss of desiccation tolerance during germination in neo-tropical pioneer seeds: implications for seed mortality and germination characteristics. Seed Science Research, 17(4), 273–281. DOI: 10.1017/S0960258507837755

Delahaie, J., Hundertmark, M., Bove, J., Leprince, O., Rogniaux, H., & Buitink, J. (2013). LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. Journal of Experimental Botany, 64(14), 4559–4573. DOI: 10.1093/jxb/ert274

Farrant, J. M. (2010). Editorial: special issue GROW “plant desiccation stress.” Plant Growth Regulation, 62(3), 189–191. DOI: 10.1007/s10725-010-9514-5

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039–1042. DOI: 10.1590/S1413-70542011000600001

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. DOI: 10.1016/j.plaphy.2010.08.016

Guimarães, C. C., Faria, J. M. R., Oliveira, J. M., & Silva, E. A. A. d. (2011). Avaliação da perda da tolerância à dessecação e da quantidade de dna nuclear em sementes de Peltophorum dubium (spreng.) taubert durante e após a germinação. Revista Brasileira de Sementes, 33(2), 207–215. DOI: 10.1590/S0101-31222011000200002

Huang, H., & Song, S. (2013). Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiology and Biochemistry, 68, 61–70. DOI: 10.1016/j.plaphy.2013.02.029

Kholová, J., Hash, C. T., Kakkera, A., Kočová, M., & Vadez, V. (2010). Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany, 61(2), 369–377. DOI: 10.1093/jxb/erp314

Le, B. H., Cheng, C., Bui, A. Q., Wagmaister, J. A., Henry, K. F., Pelletier, J., … Goldberg, R. B. (2010). Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences, 107(18), 8063–8070. DOI: 10.1073/pnas.1003530107

Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177.

Maia, J., Dekkers, B. J. W., Provart, N. J., Ligterink, W., & Hilhorst, H. W. M. (2011). The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome. PLoS ONE, 6(12), e29123. DOI: 10.1371/journal.pone.0029123

Masetto, T. E., Faria, J. M. R., & Fraiz, A. C. R. (2015). Loss and re-establishment of desiccation tolerance in the germinated seeds of Sesbania virgata (Cav.) (Pers.). Acta Scientiarum. Agronomy, 37(3), 313–320. DOI: 10.4025/actasciagron.v37i3.19373

Mishra, R. C., & Grover, A. (2016). ClpB/Hsp100 proteins and heat stress tolerance in plants. Critical Reviews in Biotechnology, 36(5), 862–874. DOI: 10.3109/07388551.2015.1051942

Mohammadkhani, N., & Heidari, R. (2008). Effects of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32(1), 23–30.

Oliver, M. J., Tuba, Z., & Mishler, B. D. (2000). The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151(1), 85–100. DOI: 10.1023/A:1026550808557

Oumar, I., Mariac, C., Pham, J.-L., & Vigouroux, Y. (2008). Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and Applied Genetics, 117(4), 489–497. DOI: 10.1007/s00122-008-0793-4

Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012) "NIH Image to Image J: 25 years of image analysis". Nature Methods 9, 671-675.

Reis, R. d. G. E., Guimarães, R. M., Pereira, D. de S., Castro, M. B. d., Vieira, A. R., & Carvalho, M. L. M. d. (2013). Qualidade fisiológica de sementes de berinjela osmocondicionadas submetidas à secagem. Pesquisa Agropecuária Brasileira, 48(11), 1507–1516. DOI: 10.1590/S0100-204X2013001100012

Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., & Venkateswarlu, B. (2014). Drought stress responses in crops. Functional & Integrative Genomics, 14(1), 11–22. DOI: 10.1007/s10142-013-0356-x

Silva, L. A. d., Sales, J. D. F., Oliveira, J. A., Pinho, É. V. d. R. Von, Santos, H. O. d., & Soares, M. A. (2015). ‘Desiccation tolerance of Rhamnidium elaeocarpum Reissek (Rhamnaceae) seeds. Acta Scientiarum. Agronomy, 37(2), 181–189. DOI: 10.4025/actasciagron.v37i2.19425

Smeekens, S., Ma, J., Hanson, J., & Rolland, F. (2010). Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 13(3), 273–278. DOI: 10.1016/j.pbi.2009.12.002

Spanò, C., Bottega, S., Grilli, I., & Lorenzi, R. (2011). Responses to desiccation injury in developing wheat embryos from naturally- and artificially-dried grains. Plant Physiology and Biochemistry, 49(4), 363–367. DOI: 10.1016/j.plaphy.2011.02.007

Torres, S. B., Paiva, E. P., Almeida, J. P. N., Benedito, C. P., & Carvalho, S. M. C. (2015). Teste de condutividade elétrica na avaliação da qualidade fisiológica de sementes de coentro. Revista Ciência Agronômica, 46(3), 622-629. DOI: 10.5935/1806-6690.20150046

Varghese, B., & Naithani, S. C. (2008). Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds. Journal of Plant Physiology, 165(7), 755–765. DOI: 10.1016/j.jplph.2007.03.009

Veiga, A. D., Rosa, S. D. V. F. d., Silva, P. d. A., Oliveira, J. A. d., Alvim, P. d. O., & Diniz, K. A. (2007). Tolerância de sementes de soja à dessecação. Ciência e Agrotecnologia, 31(3), 773–780. DOI: 10.1590/S1413-70542007000300025

Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., ... Gamas, P. (2013). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiology, 163(2), 757-774. DOI: 10.1104/pp.113.222380

Vieira, R. D., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira, & J. B. França-Neto (Eds.), Vigor de sementes: conceitos e testes (p. 1–26). Londrina, PR: Abrates.

Walters, C. (2015). Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242(2), 397–406. DOI: 10.1007/s00425-015-2312-6

Xin, X., Jing, X.-M., Liu, Y., & Song, S.-Q. (2010). Viability Loss Pattern under Rapid Dehydration of Antiaris toxicaria Axes and its Relation to Oxidative Damage. Journal of Integrative Plant Biology, 52(5), 434–441. DOI: 10.1111/j.1744-7909.2010.00924.x

Zhang, Q., Song, X., & Bartels, D. (2016). Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants. Proteomes, 4(4), 40. DOI: 10.3390/proteomes4040040

Published
2019-03-13
How to Cite
Fernandes, J. S., Guimarães, R. M., Faria, J. M. R., Pereira, D. de S., Coelho, S. V. B., & Oliveira, A. S. (2019). Physiological and biochemical changes during desiccation tolerance loss in millet (<i>Pennisetum glaucum</i&gt; L.) seeds. Acta Scientiarum. Agronomy, 41(1), e36522. https://doi.org/10.4025/actasciagron.v41i1.36522
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus