Physiological and biochemical changes during the loss of desiccation tolerance in millet (Pennisetum glaucum L.) seeds
Resumo
The aim of this study was to evaluate the physiological and biochemical changes related to the loss of desiccation tolerance in millet seeds. The points studied were determined according to the seed imbibition curve of the hybrid ADRF6010: control (0 h), 3 h, 1 and 3 mm of radicle. The seeds were dried on silica gel for 72 h at 20 °C, followed by pre-humidification at 25 °C for 24 h. The physiological quality was evaluated by the electrical conductivity and germination test, and the seed vigor through the first count and germination speed index. The experiment was performed in a completely randomized design and means were compared by the Scott-knott test at 5% probability. The enzymatic systems evaluated were: superoxide dismutase, catalase, peroxidase, and α-amylase, and the expression of heat-resistant proteins. The enzymatic activity was quantified through the software ImageJ®. Millet seeds lost desiccation tolerance when the radicle reaches 1 mm of length. According to the enzymatic standards, the enzymes peroxidase and α-amylase, as well as the activity of heat-resistant proteins are related to the loss of desiccation tolerance in millet seeds.Downloads
Referências
Abreu, L. A. d S., Veiga, A. D., Von Pinho, É. V. d. R., Monteiro, F. F., & Rosa, S. D. V. F. d. (2014). Behavior of coffee seeds to desiccation tolerance and storage. Journal of Seed Science, 36(4), 399–406. DOI: 10.1590/2317-1545v36n41008
Abreu, V. M., Silva Neta, I. C., Von Pinho, E. V. R., Naves, G. M. F., Guimarães, R. M., Santos, H. O., & Von Pinho, R. G. (2016). Heat-resistant protein expression during germination of maize seeds under water stress. Genetics and Molecular Research, 15(3), 1-8. DOI: 10.4238/gmr.15038535
Alfenas, A. C. (2006). Eletroforese e marcadores bioquímicos em plantas e microorganismos (2nd ed.). Viçosa, MG: UFV.
Angelovici, R., Galili, G., Fernie, A. R., & Fait, A. (2010). Seed desiccation: a bridge between maturation and germination. Trends in Plant Science, 15(4), 211–218. DOI: 10.1016/j.tplants.2010.01.003
Berjak, P., & Pammenter, N. W. (2008). From Avicennia to Zizania: Seed recalcitrance in perspective. Annals of Botany, 101(2), 213–228. DOI: 10.1093/aob/mcm168
Berjak, P., Farrant, J. M., & Pammenter, N. W. (2008). Seed Desiccation-Tolerance Mechanisms. In M. A. Jenks & A. J. Wood (Eds.), Plant Desiccation Tolerance (p. 151–192). Oxford, UK: Blackwell Publishing Ltd. DOI: 10.1002/9780470376881.ch6
Bewley, J. D. (1997). Seed Germination and dormancy. The Plant Cell Online, 9(7), 1055–1066. DOI: 10.1105/tpc.9.7.1055
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy. New York, NY: Springer. DOI: 10.1007/978-1-4614-4693-4
Bolouri-Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. FEBS Journal, 277(9), 2022–2037. DOI: 10.1111/j.1742-4658.2010.07633.x
Boswell, L. C., Moore, D. S., & Hand, S. C. (2014). Quantification of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress and Chaperones, 19(3), 329–341. DOI: 10.1007/s12192-013-0458-3
Boudet, J., Buitink, J., Hoekstra, F. A., Rogniaux, H., Larré, C., Satour, P., & Leprince, O. (2006). Comparative Analysis of the Heat Stable Proteome of Radicles of Medicago truncatula Seeds during Germination Identifies Late Embryogenesis Abundant Proteins Associated with Desiccation Tolerance. Plant Physiology, 140(4), 1418–1436. DOI: 10.1104/pp.105.074039
Brasil. Ministério da Agricultura e Reforma Agrária. (2009). Regras para análise de sementes. Brasília, DF: SNDA/DNDV/CLAV.
Coelho, S. V. B., Figueiredo, M. A. d., Clemente, A. d. C. S., Coelho, L. F. S., & Rosa, S. D. V. F. d. (2015). Alterações fisiológicas e bioquímicas em sementes de café secas em sílica gel e soluções salinas saturadas. Pesquisa Agropecuária Brasileira, 50(6), 483–491. DOI: 10.1590/S0100-204X2015000600007
Crowe, J. H., Crowe, L. M., & Hoekstra, F. A. (1989). Phase transitions and permeability changes in dry membranes during rehydration. Journal of Bioenergetics and Biomembranes, 21(1), 77–91. DOI: 10.1007/BF00762213
Daws, M. I., Bolton, S., Burslem, D. F. R. P., Garwood, N. C., & Mullins, C. E. (2007). Loss of desiccation tolerance during germination in neo-tropical pioneer seeds: implications for seed mortality and germination characteristics. Seed Science Research, 17(4), 273–281. DOI: 10.1017/S0960258507837755
Delahaie, J., Hundertmark, M., Bove, J., Leprince, O., Rogniaux, H., & Buitink, J. (2013). LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. Journal of Experimental Botany, 64(14), 4559–4573. DOI: 10.1093/jxb/ert274
Farrant, J. M. (2010). Editorial: special issue GROW “plant desiccation stress.” Plant Growth Regulation, 62(3), 189–191. DOI: 10.1007/s10725-010-9514-5
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039–1042. DOI: 10.1590/S1413-70542011000600001
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. DOI: 10.1016/j.plaphy.2010.08.016
Guimarães, C. C., Faria, J. M. R., Oliveira, J. M., & Silva, E. A. A. d. (2011). Avaliação da perda da tolerância à dessecação e da quantidade de dna nuclear em sementes de Peltophorum dubium (spreng.) taubert durante e após a germinação. Revista Brasileira de Sementes, 33(2), 207–215. DOI: 10.1590/S0101-31222011000200002
Huang, H., & Song, S. (2013). Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiology and Biochemistry, 68, 61–70. DOI: 10.1016/j.plaphy.2013.02.029
Kholová, J., Hash, C. T., Kakkera, A., Kočová, M., & Vadez, V. (2010). Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany, 61(2), 369–377. DOI: 10.1093/jxb/erp314
Le, B. H., Cheng, C., Bui, A. Q., Wagmaister, J. A., Henry, K. F., Pelletier, J., … Goldberg, R. B. (2010). Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences, 107(18), 8063–8070. DOI: 10.1073/pnas.1003530107
Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177.
Maia, J., Dekkers, B. J. W., Provart, N. J., Ligterink, W., & Hilhorst, H. W. M. (2011). The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome. PLoS ONE, 6(12), e29123. DOI: 10.1371/journal.pone.0029123
Masetto, T. E., Faria, J. M. R., & Fraiz, A. C. R. (2015). Loss and re-establishment of desiccation tolerance in the germinated seeds of Sesbania virgata (Cav.) (Pers.). Acta Scientiarum. Agronomy, 37(3), 313–320. DOI: 10.4025/actasciagron.v37i3.19373
Mishra, R. C., & Grover, A. (2016). ClpB/Hsp100 proteins and heat stress tolerance in plants. Critical Reviews in Biotechnology, 36(5), 862–874. DOI: 10.3109/07388551.2015.1051942
Mohammadkhani, N., & Heidari, R. (2008). Effects of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32(1), 23–30.
Oliver, M. J., Tuba, Z., & Mishler, B. D. (2000). The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151(1), 85–100. DOI: 10.1023/A:1026550808557
Oumar, I., Mariac, C., Pham, J.-L., & Vigouroux, Y. (2008). Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and Applied Genetics, 117(4), 489–497. DOI: 10.1007/s00122-008-0793-4
Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012) "NIH Image to Image J: 25 years of image analysis". Nature Methods 9, 671-675.
Reis, R. d. G. E., Guimarães, R. M., Pereira, D. de S., Castro, M. B. d., Vieira, A. R., & Carvalho, M. L. M. d. (2013). Qualidade fisiológica de sementes de berinjela osmocondicionadas submetidas à secagem. Pesquisa Agropecuária Brasileira, 48(11), 1507–1516. DOI: 10.1590/S0100-204X2013001100012
Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., & Venkateswarlu, B. (2014). Drought stress responses in crops. Functional & Integrative Genomics, 14(1), 11–22. DOI: 10.1007/s10142-013-0356-x
Silva, L. A. d., Sales, J. D. F., Oliveira, J. A., Pinho, É. V. d. R. Von, Santos, H. O. d., & Soares, M. A. (2015). ‘Desiccation tolerance of Rhamnidium elaeocarpum Reissek (Rhamnaceae) seeds. Acta Scientiarum. Agronomy, 37(2), 181–189. DOI: 10.4025/actasciagron.v37i2.19425
Smeekens, S., Ma, J., Hanson, J., & Rolland, F. (2010). Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 13(3), 273–278. DOI: 10.1016/j.pbi.2009.12.002
Spanò, C., Bottega, S., Grilli, I., & Lorenzi, R. (2011). Responses to desiccation injury in developing wheat embryos from naturally- and artificially-dried grains. Plant Physiology and Biochemistry, 49(4), 363–367. DOI: 10.1016/j.plaphy.2011.02.007
Torres, S. B., Paiva, E. P., Almeida, J. P. N., Benedito, C. P., & Carvalho, S. M. C. (2015). Teste de condutividade elétrica na avaliação da qualidade fisiológica de sementes de coentro. Revista Ciência Agronômica, 46(3), 622-629. DOI: 10.5935/1806-6690.20150046
Varghese, B., & Naithani, S. C. (2008). Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds. Journal of Plant Physiology, 165(7), 755–765. DOI: 10.1016/j.jplph.2007.03.009
Veiga, A. D., Rosa, S. D. V. F. d., Silva, P. d. A., Oliveira, J. A. d., Alvim, P. d. O., & Diniz, K. A. (2007). Tolerância de sementes de soja à dessecação. Ciência e Agrotecnologia, 31(3), 773–780. DOI: 10.1590/S1413-70542007000300025
Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., ... Gamas, P. (2013). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiology, 163(2), 757-774. DOI: 10.1104/pp.113.222380
Vieira, R. D., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira, & J. B. França-Neto (Eds.), Vigor de sementes: conceitos e testes (p. 1–26). Londrina, PR: Abrates.
Walters, C. (2015). Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242(2), 397–406. DOI: 10.1007/s00425-015-2312-6
Xin, X., Jing, X.-M., Liu, Y., & Song, S.-Q. (2010). Viability Loss Pattern under Rapid Dehydration of Antiaris toxicaria Axes and its Relation to Oxidative Damage. Journal of Integrative Plant Biology, 52(5), 434–441. DOI: 10.1111/j.1744-7909.2010.00924.x
Zhang, Q., Song, X., & Bartels, D. (2016). Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants. Proteomes, 4(4), 40. DOI: 10.3390/proteomes4040040
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.