Pretreatment of forage legumes under moderate salinity with exogenous salicylic acid or spermidine
Abstract
The present study aims to determine whether exogenous salicylic acid (SA) or spermidine (Spd) has any protective effect against salt stress. Seeds were subjected to 0, 20, 40, and 60 mM NaCl with or without salicylic acid or spermidine (0.5 mM) for 10 days. The evaluated variables were germination rate, shoot and root dry masses, glycine betaine content, lipid peroxidation, and the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The data were subjected to Tukey’s test (p ≤ 0.05). There was a growth increase, especially in plant shoots. The reduction in lipid peroxidation, as indicated by lower malondialdehyde (MDA) levels, can be explained by an increase in antioxidant activity when SA and Spd were added. When compared to CAT and APX, SOD was the least responsive enzyme to the addition of both SA and Spd in salt-stressed plants. SA and Spd partially reduced the effects of moderate salt stress in both plant species; however, Spd addition had better results than SA in terms of suppressing oxidative stress. Lablab plants were more vigorous than pigeonpea plants.
Downloads
References
Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. DOI: 10.4161/psb.5.4.10873
Alcázar, R., & Tiburcio, A. F. (2014). Plant polyamines in stress and development: an emerging area of research in plant sciences. Frontiers in Plant Science, 5(319), 1-2. DOI: 10.3389/fpls.2014.00319
Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. DOI: 10.1034/j.1399-3054.1998.1040217.x
Barba-Espín, G., Clemente-Moreno, M. J., Alvarez, S., García-Legaz, M. F., Hernández, J. A., & Díaz-Vivancos, P. (2011). Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biology, 13(6), 909-917. DOI: 10.1111/j.1438-8677.2011.00461.x
Barbosa, J. C., & Maldonado Júnior, W. (2010). Experimentação agronômica e AgroEstat: sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, SP: Multipress.
Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M. G. A., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, 74, 165-175. DOI: 10.1016/j.plaphy.2013.11.016
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: 10.1016/0003-2697(76)90527-3
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2009).. Regras para análise de sementes. Brasília, DF: MAPA/ACS.
Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26(1), 62-70. DOI: 10.1016/j.copbio.2013.09.011
Chen, T. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. DOI: 10.1111/j.1365-3040.2010.02232.x
Destro, M. V. P., Santos, D. M. M. D., Vollet, V. C., Marin, A., & Banzatto, D. A. (2008). Salt stress associated to exogenous spermidine application on the accumulation of glycine betaine in pigeonpea. Bragantia, 67(3), 593-597. DOI: 10.1590/S0006-87052008000300006
Dolatabadian, A., Modarres Sanavy, S. A. M., & Sharifi, M. (2009). Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(5), 456-464. DOI: 10.1080/09064710802342350
Duan, J., Li, J., Guo, S., & Kang, Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 165(15), 1620-1635. DOI: 10.1016/j.jplph.2007.11.006
Duran, J. M., & Tortosa, M. E. (1985). The effect of mechanical and chemical scarification on germination of charlock (Sinapis arvensis L.) seeds. Seed Science and Technology, 13(1), 155-163.
El-Beltagi, H. S., & Mohamed, H. I. (2013). Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 44-57. DOI: 10.15835/nbha4118929
Fariduddin, Q., Khan, T. A., Yusuf, M., Aafaqee, S. T., & Khalil, R. R. A. E. (2017). Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica, 56(3), 1-13. DOI: 10.1007/s11099-017-0727-y
Fariduddin, Q., Varshney, P., Yusuf, M., Ali, A., & Ahmad, A. (2013). Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress, 7(1), 8-18.
Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314.
Gill, S. S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5(1), 26-33. DOI: 10.4161/psb.5.1.10291
Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior, 6(11), 1746-1751. DOI: 10.4161%2Fpsb.6.11.17801
Gratão, P. L., Monteiro, C. C., Carvalho, R. F., Tezotto, T., Piotto, F. A., Peres, L. E., & Azevedo, R. A. (2012). Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry, 56(1), 79-96. DOI: 10.1016/j.plaphy.2012.04.009
Gratão, P. L., Monteiro, C. C., Tezotto, T., Carvalho, R. F., Alves, L. R., Peters, L. P., & Azevedo, R. A. (2015). Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals, 28(5), 803-816. DOI: 10.1007/s10534-015-9867-3
Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307.
Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35(7), 2015-2036.
Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., & Li, G. (2012). Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant and Soil, 354(1-2), 81-95.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Ahmad, S., & Fujita, M. (2015). Exogenous application of phytoprotectants in legumes against environmental stress. In M. M. Azooz, & P. Ahmad (Ed.), Legumes under environmental stress: Yield, improvement and adaptations (p. 161-197). New Jersey, US: John Wiley & Sons, Ltd. DOI: 10.1002/9781118917091.ch11
Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. DOI: 10.1016/j.envexpbot.2009.08.005
Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Botanica Croatica, 72(2), 323-335. DOI: 10.2478/v10184-012-0019-3
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. DOI: 10.1016/0003-9861(68)90654-1
Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26(3), 290-300. DOI: 10.1007/s00344-007-9017-4
Huang, Y., Lin, C., He, F., Li, Z., Guan, Y., Hu, Q., & Hu, J. (2017). Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biology, 17(1), 1-16. DOI: 10.1186/s12870-016-0951-9
Jagendorf, A. T., & Takabe, T. (2001). Inducers of glycinebetaine synthesis in barley. Plant Physiology, 127(4), 1827-1835. DOI: 10.1104/pp.010392
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1), 25-40.
Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. DOI: 10.1016/j.plaphy.2014.03.026
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6(642), 1-17. DOI: 10.3389/fpls.2015.00462
Kraus, T. E., Pauls, K. P., & Fletcher, R. A. (1995). Paclobutrazol-and hardening-induced thermotolerance of wheat: are heat shock proteins involved. Plant and Cell Physiology, 36(1), 59-67. DOI: 10.1093/oxfordjournals.pcp.a078745
Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V., & Hüner, N. P. (2015). Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 126(2-3), 221-235. DOI: 10.1007/s11120-015-0125-x
Kusano, T., Berberich, T., Tateda, C., & Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta, 228(3), 367-381. DOI: 10.1007/s00425-008-0772-7
Latef, A. A. H. A., & Ahmad, P. (2014). Legumes and breeding under abiotic stress: an overview. In M. M. Azooz, & P. Ahmad (Ed.), Legumes under environmental stress: Yield, improvement and adaptations (p. 1-20). New Jersey, US: John Wiley & Sons, Ltd. DOI: 10.1002/9781118917091.ch11
Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188(2), 626-637. DOI: 10.1111/j.1469-8137.2010.03378.x
Liang, C., Zhang, X. Y., Luo, Y., Wang, G. P., Zou, Q., & Wang, W. (2009). Over accumulation of glycine betaine alleviates the negative effects of salt stress in wheat. Russian Journal of Plant Physiology, 56(3), 370-376.
Melloni, M. L. G., Cruz, F. J. R., Santos, D. M. M. D., Souza, L. F. G. D., Silva, J. D., Saccini, V. A. V., & Monteiro, J. G. (2012). Espermidina exógena atenua os efeitos do NaCl na germinação e crescimento inicial de leguminosas forrageiras. Revista Brasileira de Sementes, 34(3), 495-503. DOI: 10.1590/S0101-31222012000300018
Misra, N., & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3), 181-189. DOI: 10.1016/j.plantsci.2009.05.007
Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5(4), 1-12. DOI: 10.3389/fpls.2014.00004
Munns, R. (2009) Strategies for crop improvement in saline soils. In M. Ashraf, M. Ozturk, & H. Athar (Ed.), Salinity and water stress. Tasks for vegetation sciences (p. 99-110). Dordrecht, GE: Springer.
Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in Botanical Research, 57(1), 1-32. DOI: 10.1016/B978-0-12-387692-8.00001-1
Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? New Phytologist, 208(3), 668-673. DOI: 10.1111/nph.13519
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911
Muthulakshmi, S., & Lingakumar, K. (2017). Role of salicylic acid (SA) in plants–A review. International Journal of Applied Research, 3(3), 33-37.
Pál, M., Szalai, G., Kovács, V., Gondor, O. K., & Janda, T. (2013). Salicylic acid-mediated abiotic stress tolerance. In Salicylic acid (p. 183-247). Heidelberg, GE: Springer Netherlands.
Park, H. J., Kim, W. Y., & Yun, D. J. (2016). A new insight of salt stress signaling in plant. Molecules and Cells, 39(6), 447. DOI: 10.14348/molcells.2016.0083
Pirasteh-Anosheh, H., Ranjbar, G., Pakniyat, H., & Emam, Y. (2016). Physiological mechanisms of salt stress tolerance in plants: An overview. In M. M. Azooz, & P. Ahmad (Ed.), Plant-environment interaction: Responses and approaches to mitigate stress (p. 141-160). New Jersey, US: John Wiley & Sons, Ltd. DOI: 10.1002/9781119081005.ch8
Rahman, A., Nahar, K., Al Mahmud, J., Hasanuzzaman, M., Hossain, M. S., & Fujita, M. (2017). Salt stress tolerance in rice: Emerging role of exogenous phytoprotectants. In Advances in International Rice Research. London, UK: InTech. DOI: 10.5772/67098
Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141(3), 910-923. DOI: 10.1104/pp.106.082057
Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338. DOI: 10.1093/jxb/err031
Roychoudhury, A., & Banerjee, A. (2016). Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Tropical Plant Research, 3(1), 105-111.
Roychoudhury, A., Basu, S., & Sengupta, D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168(4), 317-328. DOI: 10.1016/j.jplph.2010.07.009
Saleethong, P., Roytrakul, S., Kong-Ngern, K., & Theerakulpisut, P. (2016). Differential proteins expressed in rice leaves and grains in response to salinity and exogenous spermidine treatments. Rice Science, 23(1), 9-21. DOI: 10.1016/j.rsci.2016.01.002
Saleethong, P., Sanitchon, J., Kong-Ngern, K., & Theerakulpisut, P. (2011). Pretreatment with spermidine reverses inhibitory effects of salt stress in two rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian Journal of Plant Sciences, 10(4), 245-254. DOI: 10.3923/ajps.2011.245.254
Salisbury, F.B. & Ross, C.W. (1992). Plant Physiology (4th ed.). In Hormones and plant regulators: Auxins and gibberellins (p. 357-381). Belmont, US: Wadsworth Publishing.
Sengupta, A., Chakraborty, M., Saha, J., Gupta, B., & Gupta, K. (2016). Polyamines: Osmoprotectants in plant abiotic stress adaptation. In N. Iqbal, R. Nazar, & N. A. Khan (Ed.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies (p. 97-127). Dordrecht, GE: Springer. DOI: 10.1007/978-81-322-2616-1_7
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26. DOI: 10.1155/2012/217037
Tan, L., Chen, S., Wang, T., & Dai, S. (2013). Proteomic insights into seed germination in response to environmental factors. Proteomics, 13(12-13), 1850-1870. DOI: 10.1002/pmic.201200394
Tian, F., Wang, W., Liang, C., Wang, X., Wang, G., & Wang, W. (2017). Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. The Crop Journal, 5(1), 73-82. DOI: 10.1016/j.cj.2016.05.008
Wani, H. S., Brajendra Singh, N., Haribhushan, A., & Iqbal Mir, J. (2013). Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Current Genomics, 14(3), 157-165. DOI: 10.2174%2F1389202911314030001
Yousuf, P. Y., Ahmad, A., Ganie, A. H., Sareer, O., Krishnapriya, V., Aref, I. M., & Iqbal, M. (2017). Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regulation, 81(1), 31-50. DOI: 10.1007%2Fs10725-016-0182-y
Zapata, P. J., Serrano, M., Pretel, M. T., Amorós, A., & Botella, M. Á. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science, 167(4), 781-788. DOI: 10.1016/j.plantsci.2004.05.014
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.