Pretreatment of forage legumes under moderate salinity with exogenous salicylic acid or spermidine

  • Antonio Pizolato Neto Universidade Estadual Paulista http://orcid.org/0000-0002-5041-6392
  • Rita de Cássia Alves Universidade Estadual Paulista
  • Ayza Eugênio Viana Camargos Universidade Estadual Paulista
  • Priscila Lupino Gratão Universidade Estadual Paulista
  • Sônia Maria Raymundo Carregari Universidade Estadual Paulista
  • Sonia Marli Zingaretti Universidade de Ribeirão Preto
  • Durvalina Maria Mathias Dos Santos Universidade Estadual Paulista
Palavras-chave: Cajanus cajan; Dolichos lablab; salt stress; glycine betaine; oxidative stress; growth.

Resumo

The present study aims to determine whether exogenous salicylic acid (SA) or spermidine (Spd) has any protective effect against salt stress. Seeds were subjected to 0, 20, 40, and 60 mM NaCl with or without salicylic acid or spermidine (0.5 mM) for 10 days. The evaluated variables were germination rate, shoot and root dry masses, glycine betaine content, lipid peroxidation, and the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The data were subjected to Tukey’s test (p ≤ 0.05). There was a growth increase, especially in plant shoots. The reduction in lipid peroxidation, as indicated by lower malondialdehyde (MDA) levels, can be explained by an increase in antioxidant activity when SA and Spd were added. When compared to CAT and APX, SOD was the least responsive enzyme to the addition of both SA and Spd in salt-stressed plants. SA and Spd partially reduced the effects of moderate salt stress in both plant species; however, Spd addition had better results than SA in terms of suppressing oxidative stress. Lablab plants were more vigorous than pigeonpea plants.

Downloads

Não há dados estatísticos.

Referências

Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. DOI: 10.4161/psb.5.4.10873

Alcázar, R., & Tiburcio, A. F. (2014). Plant polyamines in stress and development: an emerging area of research in plant sciences. Frontiers in Plant Science, 5(319), 1-2. DOI: 10.3389/fpls.2014.00319

Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. DOI: 10.1034/j.1399-3054.1998.1040217.x

Barba-Espín, G., Clemente-Moreno, M. J., Alvarez, S., García-Legaz, M. F., Hernández, J. A., & Díaz-Vivancos, P. (2011). Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biology, 13(6), 909-917. DOI: 10.1111/j.1438-8677.2011.00461.x

Barbosa, J. C., & Maldonado Júnior, W. (2010). Experimentação agronômica e AgroEstat: sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, SP: Multipress.

Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M. G. A., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, 74, 165-175. DOI: 10.1016/j.plaphy.2013.11.016

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: 10.1016/0003-2697(76)90527-3

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2009).. Regras para análise de sementes. Brasília, DF: MAPA/ACS.

Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26(1), 62-70. DOI: 10.1016/j.copbio.2013.09.011

Chen, T. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. DOI: 10.1111/j.1365-3040.2010.02232.x

Destro, M. V. P., Santos, D. M. M. D., Vollet, V. C., Marin, A., & Banzatto, D. A. (2008). Salt stress associated to exogenous spermidine application on the accumulation of glycine betaine in pigeonpea. Bragantia, 67(3), 593-597. DOI: 10.1590/S0006-87052008000300006

Dolatabadian, A., Modarres Sanavy, S. A. M., & Sharifi, M. (2009). Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(5), 456-464. DOI: 10.1080/09064710802342350

Duan, J., Li, J., Guo, S., & Kang, Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 165(15), 1620-1635. DOI: 10.1016/j.jplph.2007.11.006

Duran, J. M., & Tortosa, M. E. (1985). The effect of mechanical and chemical scarification on germination of charlock (Sinapis arvensis L.) seeds. Seed Science and Technology, 13(1), 155-163.

El-Beltagi, H. S., & Mohamed, H. I. (2013). Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 44-57. DOI: 10.15835/nbha4118929

Fariduddin, Q., Khan, T. A., Yusuf, M., Aafaqee, S. T., & Khalil, R. R. A. E. (2017). Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica, 56(3), 1-13. DOI: 10.1007/s11099-017-0727-y

Fariduddin, Q., Varshney, P., Yusuf, M., Ali, A., & Ahmad, A. (2013). Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress, 7(1), 8-18.

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314.

Gill, S. S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5(1), 26-33. DOI: 10.4161/psb.5.1.10291

Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior, 6(11), 1746-1751. DOI: 10.4161%2Fpsb.6.11.17801

Gratão, P. L., Monteiro, C. C., Carvalho, R. F., Tezotto, T., Piotto, F. A., Peres, L. E., & Azevedo, R. A. (2012). Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry, 56(1), 79-96. DOI: 10.1016/j.plaphy.2012.04.009

Gratão, P. L., Monteiro, C. C., Tezotto, T., Carvalho, R. F., Alves, L. R., Peters, L. P., & Azevedo, R. A. (2015). Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals, 28(5), 803-816. DOI: 10.1007/s10534-015-9867-3

Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307.

Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35(7), 2015-2036.

Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., & Li, G. (2012). Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant and Soil, 354(1-2), 81-95.

Hasanuzzaman, M., Nahar, K., Alam, M. M., Ahmad, S., & Fujita, M. (2015). Exogenous application of phytoprotectants in legumes against environmental stress. In M. M. Azooz, & P. Ahmad (Ed.), Legumes under environmental stress: Yield, improvement and adaptations (p. 161-197). New Jersey, US: John Wiley & Sons, Ltd. DOI: 10.1002/9781118917091.ch11

Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. DOI: 10.1016/j.envexpbot.2009.08.005

Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Botanica Croatica, 72(2), 323-335. DOI: 10.2478/v10184-012-0019-3

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. DOI: 10.1016/0003-9861(68)90654-1

Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26(3), 290-300. DOI: 10.1007/s00344-007-9017-4

Huang, Y., Lin, C., He, F., Li, Z., Guan, Y., Hu, Q., & Hu, J. (2017). Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biology, 17(1), 1-16. DOI: 10.1186/s12870-016-0951-9

Jagendorf, A. T., & Takabe, T. (2001). Inducers of glycinebetaine synthesis in barley. Plant Physiology, 127(4), 1827-1835. DOI: 10.1104/pp.010392

Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1), 25-40.

Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. DOI: 10.1016/j.plaphy.2014.03.026

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6(642), 1-17. DOI: 10.3389/fpls.2015.00462

Kraus, T. E., Pauls, K. P., & Fletcher, R. A. (1995). Paclobutrazol-and hardening-induced thermotolerance of wheat: are heat shock proteins involved. Plant and Cell Physiology, 36(1), 59-67. DOI: 10.1093/oxfordjournals.pcp.a078745

Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V., & Hüner, N. P. (2015). Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 126(2-3), 221-235. DOI: 10.1007/s11120-015-0125-x

Kusano, T., Berberich, T., Tateda, C., & Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta, 228(3), 367-381. DOI: 10.1007/s00425-008-0772-7

Latef, A. A. H. A., & Ahmad, P. (2014). Legumes and breeding under abiotic stress: an overview. In M. M. Azooz, & P. Ahmad (Ed.), Legumes under environmental stress: Yield, improvement and adaptations (p. 1-20). New Jersey, US: John Wiley & Sons, Ltd. DOI: 10.1002/9781118917091.ch11

Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188(2), 626-637. DOI: 10.1111/j.1469-8137.2010.03378.x

Liang, C., Zhang, X. Y., Luo, Y., Wang, G. P., Zou, Q., & Wang, W. (2009). Over accumulation of glycine betaine alleviates the negative effects of salt stress in wheat. Russian Journal of Plant Physiology, 56(3), 370-376.

Melloni, M. L. G., Cruz, F. J. R., Santos, D. M. M. D., Souza, L. F. G. D., Silva, J. D., Saccini, V. A. V., & Monteiro, J. G. (2012). Espermidina exógena atenua os efeitos do NaCl na germinação e crescimento inicial de leguminosas forrageiras. Revista Brasileira de Sementes, 34(3), 495-503. DOI: 10.1590/S0101-31222012000300018

Misra, N., & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3), 181-189. DOI: 10.1016/j.plantsci.2009.05.007

Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5(4), 1-12. DOI: 10.3389/fpls.2014.00004

Munns, R. (2009) Strategies for crop improvement in saline soils. In M. Ashraf, M. Ozturk, & H. Athar (Ed.), Salinity and water stress. Tasks for vegetation sciences (p. 99-110). Dordrecht, GE: Springer.

Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in Botanical Research, 57(1), 1-32. DOI: 10.1016/B978-0-12-387692-8.00001-1

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? New Phytologist, 208(3), 668-673. DOI: 10.1111/nph.13519

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911

Muthulakshmi, S., & Lingakumar, K. (2017). Role of salicylic acid (SA) in plants–A review. International Journal of Applied Research, 3(3), 33-37.

Pál, M., Szalai, G., Kovács, V., Gondor, O. K., & Janda, T. (2013). Salicylic acid-mediated abiotic stress tolerance. In Salicylic acid (p. 183-247). Heidelberg, GE: Springer Netherlands.

Park, H. J., Kim, W. Y., & Yun, D. J. (2016). A new insight of salt stress signaling in plant. Molecules and Cells, 39(6), 447. DOI: 10.14348/molcells.2016.0083

Pirasteh-Anosheh, H., Ranjbar, G., Pakniyat, H., & Emam, Y. (2016). Physiological mechanisms of salt stress tolerance in plants: An overview. In M. M. Azooz, & P. Ahmad (Ed.), Plant-environment interaction: Responses and approaches to mitigate stress (p. 141-160). New Jersey, US: John Wiley & Sons, Ltd. DOI: 10.1002/9781119081005.ch8

Rahman, A., Nahar, K., Al Mahmud, J., Hasanuzzaman, M., Hossain, M. S., & Fujita, M. (2017). Salt stress tolerance in rice: Emerging role of exogenous phytoprotectants. In Advances in International Rice Research. London, UK: InTech. DOI: 10.5772/67098

Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141(3), 910-923. DOI: 10.1104/pp.106.082057

Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338. DOI: 10.1093/jxb/err031

Roychoudhury, A., & Banerjee, A. (2016). Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Tropical Plant Research, 3(1), 105-111.

Roychoudhury, A., Basu, S., & Sengupta, D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168(4), 317-328. DOI: 10.1016/j.jplph.2010.07.009

Saleethong, P., Roytrakul, S., Kong-Ngern, K., & Theerakulpisut, P. (2016). Differential proteins expressed in rice leaves and grains in response to salinity and exogenous spermidine treatments. Rice Science, 23(1), 9-21. DOI: 10.1016/j.rsci.2016.01.002

Saleethong, P., Sanitchon, J., Kong-Ngern, K., & Theerakulpisut, P. (2011). Pretreatment with spermidine reverses inhibitory effects of salt stress in two rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian Journal of Plant Sciences, 10(4), 245-254. DOI: 10.3923/ajps.2011.245.254

Salisbury, F.B. & Ross, C.W. (1992). Plant Physiology (4th ed.). In Hormones and plant regulators: Auxins and gibberellins (p. 357-381). Belmont, US: Wadsworth Publishing.

Sengupta, A., Chakraborty, M., Saha, J., Gupta, B., & Gupta, K. (2016). Polyamines: Osmoprotectants in plant abiotic stress adaptation. In N. Iqbal, R. Nazar, & N. A. Khan (Ed.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies (p. 97-127). Dordrecht, GE: Springer. DOI: 10.1007/978-81-322-2616-1_7

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26. DOI: 10.1155/2012/217037

Tan, L., Chen, S., Wang, T., & Dai, S. (2013). Proteomic insights into seed germination in response to environmental factors. Proteomics, 13(12-13), 1850-1870. DOI: 10.1002/pmic.201200394

Tian, F., Wang, W., Liang, C., Wang, X., Wang, G., & Wang, W. (2017). Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. The Crop Journal, 5(1), 73-82. DOI: 10.1016/j.cj.2016.05.008

Wani, H. S., Brajendra Singh, N., Haribhushan, A., & Iqbal Mir, J. (2013). Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Current Genomics, 14(3), 157-165. DOI: 10.2174%2F1389202911314030001

Yousuf, P. Y., Ahmad, A., Ganie, A. H., Sareer, O., Krishnapriya, V., Aref, I. M., & Iqbal, M. (2017). Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regulation, 81(1), 31-50. DOI: 10.1007%2Fs10725-016-0182-y

Zapata, P. J., Serrano, M., Pretel, M. T., Amorós, A., & Botella, M. Á. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science, 167(4), 781-788. DOI: 10.1016/j.plantsci.2004.05.014

Publicado
2020-04-03
Como Citar
Pizolato Neto, A., Alves, R. de C., Camargos, A. E. V., Gratão, P. L., Carregari, S. M. R., Zingaretti, S. M., & Santos, D. M. M. D. (2020). Pretreatment of forage legumes under moderate salinity with exogenous salicylic acid or spermidine. Acta Scientiarum. Agronomy, 42(1), e42809. https://doi.org/10.4025/actasciagron.v42i1.42809
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus