Inference of population effect and progeny selection via a multi-trait index in soybean breeding

  • Leonardo Volpato Universidade Federal de Viçosa
  • João Romero do Amaral Santos de Carvalho Rocha Universidade Federal de Viçosa
  • Rodrigo Silva Alves Universidade Federal de Viçosa
  • Willian Hytalo Ludke Universidade Federal de Viçosa
  • Aluízio Borém Universidade Federal de Viçosa
  • Felipe Lopes Silva Federal University of Viçosa
Keywords: mixed-model methodology; best linear unbiased prediction; selection index; genotype x environment interaction; factor analysis; ideotype design.

Abstract

The selection of superior genotypes of soybean entails a simultaneous evaluation of a number of favorable traits that provide a comparatively superior yield. Disregarding the population effect in the statistical model may compromise the estimate of variance components and the prediction of genetic values. The present study was undertaken to investigate the importance of including population effect in the statistical model and to determine the effectiveness of the index based on factor analysis and ideotype design via best linear unbiased prediction (FAI-BLUP) in the selection of erect, early, and high-yielding soybean progenies. To attain these objectives, 204 soybean progenies originating from three populations were examined for various traits of agronomic interest. The inclusion of the population effect in the statistical model was relevant in the genetic evaluation of soybean progenies. To quantify the effectiveness of the FAI-BLUP index, genetic gains were predicted and compared with those obtained by the Smith-Hazel and Additive Genetic indices. The FAI-BLUP index was effective in the selection of progenies with balanced, desirable genetic gains for all traits simultaneously. Therefore, the FAI-BLUP index is an adequate tool for the simultaneous selection of important traits in soybean breeding.

Downloads

Download data is not yet available.

Author Biography

Felipe Lopes Silva, Federal University of Viçosa
Federal University of Viçosa - Department of Plant Science, University Campus - 36570-900 - Viçosa, MG - Brazil

References

Abrahão, G. M., & Costa, M. H. (2018). Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: The rise (and possible fall) of double-cropping systems. Agricultural and Forest Meteorology, 256-257(February), 32-45. DOI: 10.1016/j.agrformet.2018.02.031

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactionson Automatic Control, 19(6), 716-723. DOI: 10.1109/TAC.1974.1100705

Akhter, M., & Sneller, C. H. (1996). Yield and yield components of early maturing soybean genotypes in the mid-south. Crop Science, 36(4), 877-882. DOI: 10.2135/cropsci1996.0011183X0036000400010x

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. DOI: 10.18637/jss.v067.i01

Bartlett, M.S. (1938). Methods of estimating mental factors. Nature, 141, 609-610. DOI: 10.1038/141246a0

Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65(5), 770-790. DOI: 10.1177/0013164404272507

Bernardo, R. (2003). Parental selection, number of breeding populations, and size of each population in inbred development. Theoretical and Applied Genetics, 107(7), 1252-1256. DOI: 10.1007/s00122-003-1375-0

Bhering, L. L., Laviola, B. G., Salgado, C. C., Sanchez, C. F. B., Rosado, T. B., & Alves, A. A. (2012). Genetic gains in physic nut using selection indexes. Pesquisa Agropecuaria Brasileira, 47(3), 402-408. DOI: 10.1590/S0100-204X2012000300012

Cappa, E. P., El-Kassaby, Y. A., Garcia, M. N., Acúna, C., Borralho, N. M., Grattapaglia, D., & Poltri, S. N. M. (2013). Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: A case study in eucalyptus globulus. PLoS ONE, 8(11), e81267. DOI: 10.1371/journal.pone.0081267

Carpentieri-Pípolo, V., De Almeida, L. A., De Souza Kiihl, R. A., & Rosolem, C. A. (2000). Inheritance of long juvenile period under short day conditions for the BR80-6778 soybean (Glycine max (L.) Merrill) line. Euphytica, 112(2), 203-209. DOI: 10.1023/A:1003927817278

Chaves, M. V. A., Silva, N. S., Silva, R. H. O., Jorge, G. L., Silveira, I. C., Medeiros, L. A., … Hamawaki, C. D. L. (2017). Genotype x environment interaction and stability of soybean cultivars for vegetative-stage characters. Genetics and Molecular Research, 16(3), 1-10. DOI: 10.4238/gmr16039795

Coan, R. (1959). A comparison of oblique and orthogonal factor solutions. The Journal of Experimental Education, 27(3), 151-166.

Cooper, R. L. (2003). A delayed flowering barrier to higher soybean yields. Field Crops Research, 82(1), 27-35. DOI: 10.1016/S0378-4290(03)00003-0

Cooper, R.L. (1971). Influence of soybean production practices on lodging environments and seed yield in highly product. Agronomy Journal, 63(3), 490-493. DOI: 10.2134/agronj1971.00021962006300030043x

Cruz, C. D. (2013). GENES - Software para análise de dados em estatística experimental e em genética quantitativa. Acta Scientiarum. Agronomy, 35(3), 271-276. DOI: 10.4025/actasciagron.v35i3.21251

Daetwyler, H. D., Kemper, K. E., Van Der Werf, J. H. J., & Hayes, B. J. (2012). Components of the accuracy of genomic prediction in a multi-breed sheep population. Journal of Animal Science, 90(10), 3375-3384. DOI: 10.2527/jas.2011-4557

Diniz, F. O., Reis, M. S., Dias, L. A. dos S., Araújo, E. F., Sediyama, T., & Sediyama, C. A. (2013). Physiological quality of soybean seeds of cultivars submitted to harvesting delay and its association with seedling emergence in the field. Journal of Seed Science, 35(2), 147-152. DOI: 10.1590/S2317-15372013000200002

Duarte, J. B., & Vencovsky, R. (2001). Estimação e predição por modelo linear misto com ênfase na ordenação de médias de tratamentos genéticos. Scientia Agricola, 58(1), 109-117. DOI: 10.1590/S0103-90162001000100017

Egli, D. B., Orf, J. H., & Pfeiffer, T. W. (1984). Genotypic variation for duration of seedfill in soybean1. Crop Science, 24(3), 587-592. DOI: 10.2135/cropsci1984.0011183X002400030037x

Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Ames, US: Iowa State University. (Special Report, 87). Retrieved on July 14, 2018 from http://lib.dr.iastate.edu/specialreports/87

Furtini, I. V., Ramalho, M. A. P., Abad, J. I. M., & Aguiar, A. M. (2012). Effect of different progeny test strategies in the performance of eucalypt clones. Silvae Genetica, 61(1-6), 116-120. DOI: 10.1515/sg-2012-0014

Gauch, H. G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53(5), 1860-1869. DOI: 10.2135/cropsci2013.04.0241

Hazel, L. N. (1943). The genetic basis for constructing selection indexes. Genetics, 28(6), 476-490.

Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model published by: international biometric society stable. Biometrics, 31(2), 423-447.

Kang, M. S., & Gauch, H. G. (1996). Genotype -by- environment interaction. Boca Raton, FL: CRC Press.

Kantolic, A. G., Peralta, G. E., & Slafer, G. A. (2013). Seed number responses to extended photoperiod and shading during reproductive stages in indeterminate soybean. European Journal of Agronomy, 51, 91-100. DOI: 10.1016/J.EJA.2013.07.006

Kaiser, H. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. DOI: 10.1007/BF02289233

Kyei-Boahen, S., & Zhang, L. (2006). Early-Maturing Soybean in a Wheat–Soybean Double-Crop System. Agronomy Journal, 98(2), 295. DOI: 10.2134/agronj2005.0198

Lersten, N.R., & Carlson, J.B. (2004). Vegetative morphology. In: H. R. Boerma, & J. E. Specht (Eds.), Soybeans: Improvement, production and uses (p. 15-57). Madison: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.

Li, X., Lund, M. S., Zhang, Q., Costa, C. N., Ducrocq, V., & Su, G. (2016). Improving accuracy of predicting breeding values in Brazilian Holstein population by adding data from Nordic and French Holstein popula tions. Journal of Dairy Science, 99(6), 4574-4579. DOI: 10.3168/jds.2015-10609

Lin, C. S., & Binns, M. R. (1994). Concepts and methods of analyzing regional trial data for cultivar and location selection. Plant Breeding, 12, 271-297. DOI: 10.1002/9780470650493.ch10

Malek, M. A., Rafii, M. Y., Shahida Sharmin Afroz, M., Nath, U. K., & Mondal, M. M. A. (2014). Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. Scientific World Journal, 2014, 1-12. DOI: /10.1155/2014/968796

Mancuso, N., & Caviness, C. E. (1991). Association of selected plant traits with lodging of four determinate soybean cultivars. Crop Science, 31(4) 911-914. DOI: 10.2135/cropsci1991.0011183X003100040014x

Marcos-Filho, J., Chamma, H. M. C. P., Casagrande, J. R. R., Marcos, E. A., & Regitano-d’arce, M. A. B. (1994). Effect of harvesting time on seed physiological quality, chemical composition and storability of soybeans. Scientia Agricola, 51(2), 298-304. DOI: 10.1590/S0103-90161994000200016

Montgomery, D. C., & Peck, E. A. (1992). Introduction to linear regression analysis. New York, US: Wiley.

Panthee, D. R., Pantalone, V. R., Sams, C. E., Saxton, A. M., West, D. R., & Rayford, W. E. (2004). Genomic regions governing soybean seed nitrogen accumulation. Journal of the American Oil Chemists’ Society, 81(1), 77-81. DOI: 10.1007/s11746-004-0860-4

Panthee, D. R., Pantalone, V. R., Saxton, A. M., West, D. R., & Sams, C. E. (2007). Quantitative trait loci for agronomic traits in soybean. Plant Breeding, 126(1), 51-57. DOI: 10.1111/j.1439-0523.2006.01305.x

Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. DOI: 10.1093/biomet/58.3.545

Pereira, F., Bruzi, A. T., de Matos, J. W., Rezende, B. A., Prado, L. C., & Nunes, J. A. R. (2017). Implications of the population effect in the selection of soybean progeny. Plant Breeding, 136(5), 679-687. DOI: 10.1111/pbr.12512

Piepho, H. P., & Williams, E. R. (2006). A comparison of experimental designs for selection in breeding trials with nested treatment structure. Theoretical and Applied Genetics, 113(8), 1505-1513. DOI: 10.1007/s00122-006-0398-8

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, AU: R Foundation for Statistical Computing. Retrieved on July 14, 2018 from http://www.R-project.org.

Resende, M. D. V. de. (2016). Software Selegen-REML / BLUP : a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: 10.1590/1984-70332016v16n4a49

Resende, M. D. V. d., Ramalho, M. A. P., Carneiro, P. C. S., Carneiro, J. E. S., Batista, L. G., & Gois, I. B. (2016). Selection index with parents, populations, progenies, and generations effects in autogamous plant breeding. Crop Science, 56(2), 530-546. DOI: 10.2135/cropsci2015.05.0303

Rocha, M. D. M., & Vello, N. A. (1999). Interacão genótipos e locais para rendimento de grãos de linhagens de soja com diferentes ciclos de maturação. Bragantia, 58(1), 69-81. DOI: 10.1590/S0006-87051999000100009

Rocha, J. R. do A. S. de C., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52-60. DOI: 10.1111/gcbb.12443

Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., Naeve, S. L., … Conley, S. P. (2013). Genetic gain x management interactions in soybean: I. Planting date. Crop Science, 53(3), 804-816. DOI: 10.2135/cropsci2012.03.0157

Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., Naeve, S. L., … Conley. S. P. (2014). Physiological and phenological responses of historical soybean cultivar releases to earlier planting. Crop Science, 54(2), 804-816. DOI: 10.2135/cropsci2013.06.0428

Sediyama, T., Felipe, L. S., & Borem, A. (2015). Soja: do plantio à colheita. Viçosa, MG: Editora UFV.

Silva, F. L., Borém, A., Sediyama, T., & Ludke, W. H. (2017). Soybean breeding. Soybean Breeding. Gewerbestrasse, SW: Springer. DOI: 10.1007/978-3-319-57433-2

Smith, H. F. (1936). A discriminant function for plant selection. Annals of Eugenics, 7(3), 240-250. DOI: 10.1111/j.1469-1809.1936.tb02143.x

Van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype x Environment interactions? Crop Science, 56(5), 2119-2140. DOI: 10.2135/cropsci2015.06.0375

Van Roekel, R. J., Purcell, L. C., & Salmerón, M. (2015). Physiological and management factors contributing to soybean potential yield. Field Crops Research, 182, 86-97. DOI: 10.1016/j.fcr.2015.05.018

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1), 60-62. DOI: 10.1214/aoms/1177732360

Yamaguchi, N., Sayama, T., Yamazaki, H., Miyoshi, T., Ishimoto, M., & Funatsuki, H. (2014). Quantitative trait loci associated with lodging tolerance in soybean cultivar ‘Toyoharuka.’ Breeding Science, 64(4), 300-308. DOI: 10.1270/jsbbs.64.300

Published
2020-08-14
How to Cite
Volpato, L., Rocha, J. R. do A. S. de C., Alves, R. S., Ludke, W. H., Borém, A., & Silva, F. L. (2020). Inference of population effect and progeny selection via a multi-trait index in soybean breeding. Acta Scientiarum. Agronomy, 43(1), e44623. https://doi.org/10.4025/actasciagron.v43i1.44623
Section
Genetics and Plant Breeding

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus