Inference of population effect and progeny selection via a multi-trait index in soybean breeding
Resumo
The selection of superior genotypes of soybean entails a simultaneous evaluation of a number of favorable traits that provide a comparatively superior yield. Disregarding the population effect in the statistical model may compromise the estimate of variance components and the prediction of genetic values. The present study was undertaken to investigate the importance of including population effect in the statistical model and to determine the effectiveness of the index based on factor analysis and ideotype design via best linear unbiased prediction (FAI-BLUP) in the selection of erect, early, and high-yielding soybean progenies. To attain these objectives, 204 soybean progenies originating from three populations were examined for various traits of agronomic interest. The inclusion of the population effect in the statistical model was relevant in the genetic evaluation of soybean progenies. To quantify the effectiveness of the FAI-BLUP index, genetic gains were predicted and compared with those obtained by the Smith-Hazel and Additive Genetic indices. The FAI-BLUP index was effective in the selection of progenies with balanced, desirable genetic gains for all traits simultaneously. Therefore, the FAI-BLUP index is an adequate tool for the simultaneous selection of important traits in soybean breeding.
Downloads
Referências
Abrahão, G. M., & Costa, M. H. (2018). Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: The rise (and possible fall) of double-cropping systems. Agricultural and Forest Meteorology, 256-257(February), 32-45. DOI: 10.1016/j.agrformet.2018.02.031
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactionson Automatic Control, 19(6), 716-723. DOI: 10.1109/TAC.1974.1100705
Akhter, M., & Sneller, C. H. (1996). Yield and yield components of early maturing soybean genotypes in the mid-south. Crop Science, 36(4), 877-882. DOI: 10.2135/cropsci1996.0011183X0036000400010x
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. DOI: 10.18637/jss.v067.i01
Bartlett, M.S. (1938). Methods of estimating mental factors. Nature, 141, 609-610. DOI: 10.1038/141246a0
Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65(5), 770-790. DOI: 10.1177/0013164404272507
Bernardo, R. (2003). Parental selection, number of breeding populations, and size of each population in inbred development. Theoretical and Applied Genetics, 107(7), 1252-1256. DOI: 10.1007/s00122-003-1375-0
Bhering, L. L., Laviola, B. G., Salgado, C. C., Sanchez, C. F. B., Rosado, T. B., & Alves, A. A. (2012). Genetic gains in physic nut using selection indexes. Pesquisa Agropecuaria Brasileira, 47(3), 402-408. DOI: 10.1590/S0100-204X2012000300012
Cappa, E. P., El-Kassaby, Y. A., Garcia, M. N., Acúna, C., Borralho, N. M., Grattapaglia, D., & Poltri, S. N. M. (2013). Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: A case study in eucalyptus globulus. PLoS ONE, 8(11), e81267. DOI: 10.1371/journal.pone.0081267
Carpentieri-Pípolo, V., De Almeida, L. A., De Souza Kiihl, R. A., & Rosolem, C. A. (2000). Inheritance of long juvenile period under short day conditions for the BR80-6778 soybean (Glycine max (L.) Merrill) line. Euphytica, 112(2), 203-209. DOI: 10.1023/A:1003927817278
Chaves, M. V. A., Silva, N. S., Silva, R. H. O., Jorge, G. L., Silveira, I. C., Medeiros, L. A., … Hamawaki, C. D. L. (2017). Genotype x environment interaction and stability of soybean cultivars for vegetative-stage characters. Genetics and Molecular Research, 16(3), 1-10. DOI: 10.4238/gmr16039795
Coan, R. (1959). A comparison of oblique and orthogonal factor solutions. The Journal of Experimental Education, 27(3), 151-166.
Cooper, R. L. (2003). A delayed flowering barrier to higher soybean yields. Field Crops Research, 82(1), 27-35. DOI: 10.1016/S0378-4290(03)00003-0
Cooper, R.L. (1971). Influence of soybean production practices on lodging environments and seed yield in highly product. Agronomy Journal, 63(3), 490-493. DOI: 10.2134/agronj1971.00021962006300030043x
Cruz, C. D. (2013). GENES - Software para análise de dados em estatística experimental e em genética quantitativa. Acta Scientiarum. Agronomy, 35(3), 271-276. DOI: 10.4025/actasciagron.v35i3.21251
Daetwyler, H. D., Kemper, K. E., Van Der Werf, J. H. J., & Hayes, B. J. (2012). Components of the accuracy of genomic prediction in a multi-breed sheep population. Journal of Animal Science, 90(10), 3375-3384. DOI: 10.2527/jas.2011-4557
Diniz, F. O., Reis, M. S., Dias, L. A. dos S., Araújo, E. F., Sediyama, T., & Sediyama, C. A. (2013). Physiological quality of soybean seeds of cultivars submitted to harvesting delay and its association with seedling emergence in the field. Journal of Seed Science, 35(2), 147-152. DOI: 10.1590/S2317-15372013000200002
Duarte, J. B., & Vencovsky, R. (2001). Estimação e predição por modelo linear misto com ênfase na ordenação de médias de tratamentos genéticos. Scientia Agricola, 58(1), 109-117. DOI: 10.1590/S0103-90162001000100017
Egli, D. B., Orf, J. H., & Pfeiffer, T. W. (1984). Genotypic variation for duration of seedfill in soybean1. Crop Science, 24(3), 587-592. DOI: 10.2135/cropsci1984.0011183X002400030037x
Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Ames, US: Iowa State University. (Special Report, 87). Retrieved on July 14, 2018 from http://lib.dr.iastate.edu/specialreports/87
Furtini, I. V., Ramalho, M. A. P., Abad, J. I. M., & Aguiar, A. M. (2012). Effect of different progeny test strategies in the performance of eucalypt clones. Silvae Genetica, 61(1-6), 116-120. DOI: 10.1515/sg-2012-0014
Gauch, H. G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53(5), 1860-1869. DOI: 10.2135/cropsci2013.04.0241
Hazel, L. N. (1943). The genetic basis for constructing selection indexes. Genetics, 28(6), 476-490.
Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model published by: international biometric society stable. Biometrics, 31(2), 423-447.
Kang, M. S., & Gauch, H. G. (1996). Genotype -by- environment interaction. Boca Raton, FL: CRC Press.
Kantolic, A. G., Peralta, G. E., & Slafer, G. A. (2013). Seed number responses to extended photoperiod and shading during reproductive stages in indeterminate soybean. European Journal of Agronomy, 51, 91-100. DOI: 10.1016/J.EJA.2013.07.006
Kaiser, H. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. DOI: 10.1007/BF02289233
Kyei-Boahen, S., & Zhang, L. (2006). Early-Maturing Soybean in a Wheat–Soybean Double-Crop System. Agronomy Journal, 98(2), 295. DOI: 10.2134/agronj2005.0198
Lersten, N.R., & Carlson, J.B. (2004). Vegetative morphology. In: H. R. Boerma, & J. E. Specht (Eds.), Soybeans: Improvement, production and uses (p. 15-57). Madison: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.
Li, X., Lund, M. S., Zhang, Q., Costa, C. N., Ducrocq, V., & Su, G. (2016). Improving accuracy of predicting breeding values in Brazilian Holstein population by adding data from Nordic and French Holstein popula tions. Journal of Dairy Science, 99(6), 4574-4579. DOI: 10.3168/jds.2015-10609
Lin, C. S., & Binns, M. R. (1994). Concepts and methods of analyzing regional trial data for cultivar and location selection. Plant Breeding, 12, 271-297. DOI: 10.1002/9780470650493.ch10
Malek, M. A., Rafii, M. Y., Shahida Sharmin Afroz, M., Nath, U. K., & Mondal, M. M. A. (2014). Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. Scientific World Journal, 2014, 1-12. DOI: /10.1155/2014/968796
Mancuso, N., & Caviness, C. E. (1991). Association of selected plant traits with lodging of four determinate soybean cultivars. Crop Science, 31(4) 911-914. DOI: 10.2135/cropsci1991.0011183X003100040014x
Marcos-Filho, J., Chamma, H. M. C. P., Casagrande, J. R. R., Marcos, E. A., & Regitano-d’arce, M. A. B. (1994). Effect of harvesting time on seed physiological quality, chemical composition and storability of soybeans. Scientia Agricola, 51(2), 298-304. DOI: 10.1590/S0103-90161994000200016
Montgomery, D. C., & Peck, E. A. (1992). Introduction to linear regression analysis. New York, US: Wiley.
Panthee, D. R., Pantalone, V. R., Sams, C. E., Saxton, A. M., West, D. R., & Rayford, W. E. (2004). Genomic regions governing soybean seed nitrogen accumulation. Journal of the American Oil Chemists’ Society, 81(1), 77-81. DOI: 10.1007/s11746-004-0860-4
Panthee, D. R., Pantalone, V. R., Saxton, A. M., West, D. R., & Sams, C. E. (2007). Quantitative trait loci for agronomic traits in soybean. Plant Breeding, 126(1), 51-57. DOI: 10.1111/j.1439-0523.2006.01305.x
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. DOI: 10.1093/biomet/58.3.545
Pereira, F., Bruzi, A. T., de Matos, J. W., Rezende, B. A., Prado, L. C., & Nunes, J. A. R. (2017). Implications of the population effect in the selection of soybean progeny. Plant Breeding, 136(5), 679-687. DOI: 10.1111/pbr.12512
Piepho, H. P., & Williams, E. R. (2006). A comparison of experimental designs for selection in breeding trials with nested treatment structure. Theoretical and Applied Genetics, 113(8), 1505-1513. DOI: 10.1007/s00122-006-0398-8
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, AU: R Foundation for Statistical Computing. Retrieved on July 14, 2018 from http://www.R-project.org.
Resende, M. D. V. de. (2016). Software Selegen-REML / BLUP : a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: 10.1590/1984-70332016v16n4a49
Resende, M. D. V. d., Ramalho, M. A. P., Carneiro, P. C. S., Carneiro, J. E. S., Batista, L. G., & Gois, I. B. (2016). Selection index with parents, populations, progenies, and generations effects in autogamous plant breeding. Crop Science, 56(2), 530-546. DOI: 10.2135/cropsci2015.05.0303
Rocha, M. D. M., & Vello, N. A. (1999). Interacão genótipos e locais para rendimento de grãos de linhagens de soja com diferentes ciclos de maturação. Bragantia, 58(1), 69-81. DOI: 10.1590/S0006-87051999000100009
Rocha, J. R. do A. S. de C., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52-60. DOI: 10.1111/gcbb.12443
Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., Naeve, S. L., … Conley, S. P. (2013). Genetic gain x management interactions in soybean: I. Planting date. Crop Science, 53(3), 804-816. DOI: 10.2135/cropsci2012.03.0157
Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., Naeve, S. L., … Conley. S. P. (2014). Physiological and phenological responses of historical soybean cultivar releases to earlier planting. Crop Science, 54(2), 804-816. DOI: 10.2135/cropsci2013.06.0428
Sediyama, T., Felipe, L. S., & Borem, A. (2015). Soja: do plantio à colheita. Viçosa, MG: Editora UFV.
Silva, F. L., Borém, A., Sediyama, T., & Ludke, W. H. (2017). Soybean breeding. Soybean Breeding. Gewerbestrasse, SW: Springer. DOI: 10.1007/978-3-319-57433-2
Smith, H. F. (1936). A discriminant function for plant selection. Annals of Eugenics, 7(3), 240-250. DOI: 10.1111/j.1469-1809.1936.tb02143.x
Van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype x Environment interactions? Crop Science, 56(5), 2119-2140. DOI: 10.2135/cropsci2015.06.0375
Van Roekel, R. J., Purcell, L. C., & Salmerón, M. (2015). Physiological and management factors contributing to soybean potential yield. Field Crops Research, 182, 86-97. DOI: 10.1016/j.fcr.2015.05.018
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1), 60-62. DOI: 10.1214/aoms/1177732360
Yamaguchi, N., Sayama, T., Yamazaki, H., Miyoshi, T., Ishimoto, M., & Funatsuki, H. (2014). Quantitative trait loci associated with lodging tolerance in soybean cultivar ‘Toyoharuka.’ Breeding Science, 64(4), 300-308. DOI: 10.1270/jsbbs.64.300
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.