<b>Quantitative analysis of rumen microbial populations by qPCR in heifers fed on <i>Leucaena leucocephala</i> in the Colombian Tropical Dry Forest

  • Erika Angarita Colombian Corporation of Agricultural Research Corpoica / Center for Research on Sustainable Farming Systems
  • Isabel Molina National University of Colombia / Center for Research on Sustainable Farming Systems
  • Gonzalo Villegas Center for Research on Sustainable Farming Systems
  • Olga Mayorga Colombian Corporation of Agricultural Research Corpoica
  • Julián Chará Center for Research on Sustainable Farming Systems
  • Rolando Barahona Rosales National University of Colombia

Resumo

Rumen fermentation and methanogenesis are vital metabolic processes in cattle and are carried out by microbial populations that are affected by dietary factors such as secondary metabolites, nutritional composition and degradability. The aim of this study was to monitor populations of total bacteria, total methanogens and Butirivibrio fibrisolvens in the rumen of Lucerne heifers fed on diets typical of intensive silvopastoral systems (ISS) or of a traditional (control) system. Rumen contents (RC) were collected orally from eight heifers consuming 100% Cynodon plectostachyus (control) and 76% C. plectostachyus + 24% Leucaena leucocephala (ISS) following a crossover design and DNA was extracted and quantified by quantitative PCR. Populations [Log10 (ng g-1 RC)] were 5.6 and 5.8 for total bacteria (p = 0.5343), 3.6 and 3.5 for B. fibrisolvens (p = 0.4742) and 5.0 and 5.3 for total methanogens (p = 0.2661) respectively in control and ISS diets. However, when measured in a separate parallel study, enteric methane emissions (g kg-1 of fermented dry matter) were significantly reduced with the inclusion of L. leucocephala. This fact indicated the importance of investigating the structure, function and interactions of populations beyond quantitative analysis to determine how diet affects rumen microbial populations and their function.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Erika Angarita, Colombian Corporation of Agricultural Research Corpoica / Center for Research on Sustainable Farming Systems
Zootecnista, investigadora y asesora.
Isabel Molina, National University of Colombia / Center for Research on Sustainable Farming Systems
Zootecnista.
Gonzalo Villegas, Center for Research on Sustainable Farming Systems
Zootecnista.
Olga Mayorga, Colombian Corporation of Agricultural Research Corpoica
Investigador Ph.D.
Julián Chará, Center for Research on Sustainable Farming Systems
Investigador Ph.D.
Rolando Barahona Rosales, National University of Colombia
Investigador Ph.D. y profesor

Referências

ABDALLA, A. L.; LOUVANDINI, H.; SALLAM, S. M. A. H.; BUENO, I. C. D. S.; TSAI, S. M. & FIGUEIRA, A. V. D. O. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Tropical Animal Health and Production. v. 44, n.5, p 953–964, 2012.

ALEMU, A. W.; DIJKSTRA, J.; BANNINK, A.; FRANCE, J. & KEBREAB, E. Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Animal Feed Science and Technology. v.166-167, p 761–778, 2011.

ARAUJO, O. Propiedades físicas y químicas del rumen. Archivos Latinoamericanos en Producción Animal. v. 15, p 133–140, 2007.

BARAHONA ROSALES, R.; THEODOROU, M.; LASCANO, C. E.; OWEN, E. & NARVAEZ, N. In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. Journal Science Food Agriculture. v. 83, p 1256–1266, 2003.

BLÜMMEL, M.; STEINGASS, H. & BECKER, K. The relationship between in vitro gas production, in vitro microbial biomass and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal Nutrition. v. 77, p 911- 921, 1997.

CALLE, Z; MURGUEITIO, E; CHARÁ, J; MOLINA, C.H; ZULUAGA, A.F; CALLE, A. A strategy for scaling-up intensive silvopastoral systems in Colombia. Journal of Sustainable Forestry. v, 32, p 677-693, 2013.

CHARÁ, J. D.; GIRALDO C.; ZULUAGA A. F. & MURGUEITIO E. Ganadería Colombiana Sostenible: Mainstreaming Biodiversity in Sustainable Cattle Ranching. Fundación CIPAV. 2011.

CIEŚLAK, A.; SOLIVA, C. R.; POTKAŃSKI, A.; SZUMACHER-STRABEL, M.; SCHEEDER, M. R. & MACHMÜLLER, A. Effect of plant oils on methane emission and biohydrogenation in vitro. International Congress Series. v.1293, p 180–183, 2006.

COTTA, M. A. & HESPELL, R. B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Applied and Environmental Microbiology, v.52, n.1, p 51–58, 1986.

CUARTAS, C. A.; NARANJO, J. F.; TARAZONA, A. M.; MURGUEITIO, E.; CHARÁ, J. D.; KU, J.; SOLORIO, F. J.; X. FLORES, M. X.; SOLORIO, B. & BARAHONA, R. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change. Revista Colombiana de Ciencias Pecuarias. V. 27, p 76–94, 2014.

DENMAN, S. E.; TOMKINS, N. W. & MCSWEENEY, C. S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology. v. 62, n. 3, p 313–322, 2007.

ESPINAL, L.S. Geografía ecológica de Antioquia. Zonas de vida. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Pág. 146. 1991.

FERNANDO, S. C.; PURVIS, H. T.; NAJAR, F. Z.; SUKHARNIKOV, L. O.; KREHBIEL, C. R.; NAGARAJA, T. G. & DESILVA, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology. v. 76, n. 22, p 7482–7490, 2010.

FORSTER, R. J., GONG, J., & TEATHER, R. M. Group-Specific 16S rRNA Hybridization Probes for Determinative and Community Structure Studies of Butyrivibrio fibrisolvens in the Rumen. Applied and Environmental Microbiology. v. 63, n 4, p 1256–1260, 1997.

GALINDO, J.; GONZÁLEZ, N.; DELGADO, D.; SOSA, A.; GONZÁLEZ, R. & ALDANA, A. I. Efecto modulador de Leucaena leucocephala sobre la microbiota ruminal. Zootecnia Tropical. v. 26, n. 3, p 249-252. 2008.

GARCIA, G. W.; FERGUSON, T. U.; NECKLES, F. A. & ARCHIBALD, K. A. E. The nutritive value and forage productivity of Leucaena leucocephala. Animal Feed Science. Technology. v. 60,p 29–41,1996.

GAVIRIA X, C. P.; NARANJO, J. F. & BARAHONA, R. Cinética de fermentación in vitro de Leucaena leucocephala y Megathyrsus maximus y de su mezcla con o sin un suplemento energético. Pastos y Forrajes. Submitted 2014.

HAMMOND, A. C. Leucaena: Toxicosis and Its Control in Ruminants. Journal of Animal Science. v. 73, p 1487-1492, 1995.

HOOK, S. E.; WRIGHT, A. D. G. & MCBRIDE, B. W. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. v. 2010, p 11 Article ID 945785, 2010.

HUANG, X. D.; LIANG, J. B.; TAN, H. Y.; YAHYA, R. & HO, Y. W. Effects of Leucaena condensed tannins of differing molecular weights on in vitro CH4 production. Animal Feed Science and Technology. v. 166-167, p 373–376, 2011.

HUNG, L. V.; WANAPAT, M. & CHERDTHONG, A. Effects of Leucaena leaf pellet on bacterial diversity and microbial protein synthesis in swamp buffalo fed on rice straw. Livestock Science, v. 151, n 2-3, p 188–197, 2013.

JANSSEN, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology. v.160, n. 1-2, p 1–22, 2010.

JOHNSON, K. A. & JOHNSON, D. E. Methane emissions from cattle. Journal of Animal Science. v. 73, n. 8, p 2483–2492, 1995.

KAPS, M. & LAMBERSON, W. Biostatistics for animal science. CABI Publishing. 2004.

KLIEVE, A. V.; HENNESSY, D.; OUWERKERK, D.; FORSTER, R. J.; MACKIE, R. I. & ATTWOOD, G. T. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Journal of Applied Microbiology. v. 95, n. 3, p 621–630, 2003.

KOLVER, E. S. & DE VETH, M. J. Prediction of ruminal pH from pasture-based diets. Journal of Dairy Science. v. 85, n. 5, p 1255–1266, 2002.

KRAUSE, D. O.; MCSWEENEY, C. S. & FORSTER, R. J. Molecular ecological methods to study fibrolytic ruminal bacteria : Phylogeny, competition, and persistence. Proceedings of the 8th International Symposium on Microbial Ecology. p 6, 1999.

LANA, R. P.; RUSSELL, J. B. & VAN AMBURGH, M. E. The role of pH in regulating ruminal methane. Journal of Animal Science. v. 76, p 2190–2196, 1998.

MARTÍN, E.; PÉREZ, E. & CAÑÓN, S. Sonda oro-ruminal experimental como alternativa para la obtención de microorganismos anaerobios del rumen. Revista CORPOICA. v. 6, p 39–42, 2005.

MCKAIN, N.; SHINGFIELD, K.J. & WALLACE, R.J. Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: products and mechanisms. Microbiology, v 156, p, 579–588, 2010.

MCSWEENEY, C. & MACKIE, R. Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects. In Commission on genetic resources for food and agricultural, FAO. n 61, 2012.

MCSWEENEY, C. S.; DENMAN, S. E.; WRIGHT, A. G. & YU, Z. Application of recent DNA / RNA-based techniques in rumen ecology. Asian-Australasian Journal of Animal Sciences. v. 20, n. 2, p 283–294, 2007.

MOLINA BOTERO, I. C.; CANTET, J. M.; MONTOYA, S.; CORREA LONDOÑO, G. A. & BARAHONA ROSALES, R. Producción de metano in vitro de dos gramíneas tropicales solas y mezcladas con Leucaena leucocephala o Gliricidia sepium. CES Medicina Veterinaria y Zootecnia. v. 8, n. 2, p 15-31, 2013.

MOLINA, I. C.; ANGARITA, E. A.; MAYORGA, O. L.; CHARÁ, J. & BARAHONA-ROSALES, R. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Submitted. 2014.

MOREIRA, G. D.; LIMA, P. D. M. T.; BORGES, B. O.; PRIMAVESI, O.; LONGO, C.; MCMANUS, C. & LOUVANDINI, H. Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission. Tropical Animal Health and Production. v. 10, p 6–9, 2012.

MORGAVI, D. P.; FORANO, E.; MARTIN, C. & NEWBOLD, C. J. Microbial ecosystem and methanogenesis in ruminants. Animal. v. 4, n. 7, p 1024–1036, 2010.

MOSONI, P.; MARTIN, C.; FORANO, E. & MORGAVI, D. P. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. Journal of Animal Science. v. 89, n. 3, p 783–791, 2011.

MURGUEITIO, E.; CALLE, Z.; URIBE, F.; CALLE, A. & SOLORIO, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology and Management. v. 261, p 1654–1663, 2011.

NARANJO, J. F.; CUARTAS, C. A.; MURGUEITIO, E.; CHARÁ, J. & BARAHONA, R. Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livestock Research for Rural Development. v. 24, n. 8, 2012.

POSSENTI, R. A.; FRANZOLIN, R.; SCHAMMAS, E. A.; JOSÉ, J.; DEMARCHI, A. D. A.; TOYOKO, R. & LIMA, M. A. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia. v. 37, n. 8, p 1509-1516, 2008.

TAJIMA, K.; AMINOV, R. I.; NAGAMINE, T.; MATSUI, H.; NAKAMURA, M. & BENNO, Y. Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR. Applied and Environmental Microbiology. v. 67, n. 6, p 2766–2774, 2001.

ZHOU, M.; HERNANDEZ-SANABRIA, E. & GUAN, L. L. Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Applied and Environmental Microbiology. v.76, n. 12, p 3776–3786, 2010.

Publicado
2015-05-21
Como Citar
Angarita, E., Molina, I., Villegas, G., Mayorga, O., Chará, J., & Barahona Rosales, R. (2015). <b>Quantitative analysis of rumen microbial populations by qPCR in heifers fed on <i>Leucaena leucocephala</i&gt; in the Colombian Tropical Dry Forest. Acta Scientiarum. Animal Sciences, 37(2), 135-142. https://doi.org/10.4025/actascianimsci.v37i2.24836
Seção
Nutrição de Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus