Fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking
Abstract
The current study aimed at fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking. Control tanks had no tilapia but received daily applications of dry molasses (NT+) or had tilapia but no C:N ratio adjustment (T-). Experimental tanks had tilapia and received daily application of molasses to adjust the C:N ratio of water to 15:1 (T+). The development of bioflocs in NT+ was insignificant as demonstrated by low levels of settleable solids (SS) and total suspended solids (TSS). Total ammonia nitrogen (TAN) was significantly higher in NT+ than in T+. In the C:N-ratio adjusted tanks, the presence of fish shortened the control of TAN in several days. As nitrite declined in T+, it increased in NT+. The final concentrations of TSS in T+, T- and NT+ were 236 ± 29 mg L-1, 100 ± 32 mg L-1, and 40 ± 22 mg L-1, respectively (p < 0.05). It can be concluded that stable nitrifying and heterotrophic bacterial communities could be attained in BFT aquaculture tanks, before the end of the 4th week of culture, if the bacterial growth is fostered by early Nile tilapia stocking.
Downloads
References
Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. DOI: https://doi.org/10.1016/S0044-8486(99)00085-X
Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4), 29-35. DOI: https://doi.org/10.1016/j.aquaculture.2008.06.036
Bakar, N. S. A., Nasir, N. M., Lananan, F., Hamid, S. H. A., Lam, S. S., & Jusoh, A. (2015). Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. International Biodeterioration & Biodegradation, 102, 100-106. DOI: https://doi.org/10.1016/j.ibiod.2015.04.001
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259-267. DOI: https://doi.org/10.1016/j.aquaculture.2017.11.036
Boyd, C. E., & Tucker, C. S. (1992). Water quality and pond soil analyses for aquaculture. Auburn, AL: Auburn University.
Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, D.C.: American Public Health Association (APHA); American Water Works Association and Water Environmental Federation.
Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. DOI: https://doi.org/10.1016/j.aquaculture.2006.03.019
Ferreira, L. M., Lara, G., Wasielesky Jr, W., & Abreu, P. C. (2016). Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system. Aquaculture International, 24(4), 921-930. DOI: https://doi.org/10.1007/s10499-015-9961-0
Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12(1), 54-73. DOI: https://doi.org/10.21061/ijra.v12i1.1354
Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34(3), 344-363. DOI: https://doi.org/10.1016/j.aquaeng.2005.08.009
Krummenauer, D., Seifert Junior, C. A., Poersch, L. H. D. S., Foes, G. K., Lara, G. R. D., & Wasielesky Jr, W. (2012). Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlântica, 34(2), 103-111. DOI: https://doi.org/10.5088/atl.2012.34.2.103
Krummenauer, D., Samocha, T., Poersch, L., Lara, G., & Wasielesky Jr, W. (2014). The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, 45, 3-14. DOI: https://doi.org/10.1111/jwas. 12093
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-423, 1-7. DOI: https://doi.org/10.1016/j.aquaculture.2013.11.023
Malpartida-Pasco, J. J., Carvalho Filho, J. W., Espirito Santo, C. M., & Vinatea, L. (2018). Production of Nile tilapia Oreochromis niloticus grown in BFT using two aeration systems. Aquaculture Research, 49(1), 222-231. DOI: https://doi.org/10.1111/are.13451
Pérez-Fuentes, J. A., Hernández-Vergara, M. P., Pérez-Rostro, C. I., & Fogel, I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452, 247-251. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.010
Ray, A. J., & Lotz, J. M. (2014). Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquacultural Engineering, 63, 54-61. DOI: https://doi.org/10.1016/j.aquaeng.2014.10.001
Ren, W., Li, L., Dong, S., Tian, X., & Xue, Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498, 123-131. DOI: https://doi.org/10.1016/j.aquaculture.2018.08.043
Rezende, P. C., Schleder, D. D., Silva, H. V., Henriques, F. M., Lorenzo, M. A., Seiffert, W. Q., & Nascimento Vieira, F. (2018). Prenursery of the pacific white shrimp in a biofloc system using different artificial substrates. Aquacultural Engineering, 82, 25-30. DOI: https://doi.org/10.1016/j.aquaeng.2018.04.001
Schveitzer, R., Arantes, R., Costódio, P. F. S., Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. DOI: https://doi.org/10.1016/j.aquaeng.2013.04.006
Serra, F. P., Gaona, C. A., Furtado, P. S., Poersch, L. H., & Wasielesky, W. (2015). Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International, 23, 1325-1339. DOI: https://doi.org/10.1007/s10499-015-9887-6
Souza, J., Cardozo, A., Wasielesky Jr, W., & Abreu, P. C. (2019). Does the biofloc size matter to the nitrification process in Biofloc Technology (BFT) systems? Aquaculture, 500, 443-450. DOI: https://doi.org/10.1016/j.aquaculture.2018.10.051
Tierney, T. W., & Ray, A. J. (2018). Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacultural Engineering, 82(1), 73-79. DOI: https://doi.org/10.1016/j.aquaeng.2018.06.002
Wang, M., & Lu, M. (2016). Tilapia polyculture: a global review. Aquaculture Research, 47(8), 2363-2374. DOI: https://doi.org/10.1111/are.12708
Xu, W. J., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453(1), 169-175. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.021
Zhang, N., Luo, G., Tan, H., Liu, W., & Hou, Z. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture, 464(1),710–717. DOI: https://doi.org/10.1016/j.aquaculture.2016.08.013
DECLARATION OF ORIGINALITY AND COPYRIGHTS
- I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.