Fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking

  • Francisco Roberto dos Santos Lima Universidade Federal do Ceará
  • Davi de Holanda Cavalcante Instituto Federal de Educação, Cultura e Tecnologia
  • Marcelo Vinícius do Carmo e Sá Universidade Federal do Ceará
Palavras-chave: biofloc maturation; ammonia; nitrite; total suspended solids; water quality

Resumo

The current study aimed at fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking. Control tanks had no tilapia but received daily applications of dry molasses (NT+) or had tilapia but no C:N ratio adjustment (T-). Experimental tanks had tilapia and received daily application of molasses to adjust the C:N ratio of water to 15:1 (T+). The development of bioflocs in NT+ was insignificant as demonstrated by low levels of settleable solids (SS) and total suspended solids (TSS). Total ammonia nitrogen (TAN) was significantly higher in NT+ than in T+. In the C:N-ratio adjusted tanks, the presence of fish shortened the control of TAN in several days. As nitrite declined in T+, it increased in NT+. The final concentrations of TSS in T+, T- and NT+ were 236 ± 29 mg L-1, 100 ± 32 mg L-1, and 40 ± 22 mg L-1, respectively (p < 0.05). It can be concluded that stable nitrifying and heterotrophic bacterial communities could be attained in BFT aquaculture tanks, before the end of the 4th week of culture, if the bacterial growth is fostered by early Nile tilapia stocking.

Downloads

Não há dados estatísticos.

Referências

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. DOI: https://doi.org/10.1016/S0044-8486(99)00085-X

Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4), 29-35. DOI: https://doi.org/10.1016/j.aquaculture.2008.06.036

Bakar, N. S. A., Nasir, N. M., Lananan, F., Hamid, S. H. A., Lam, S. S., & Jusoh, A. (2015). Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. International Biodeterioration & Biodegradation, 102, 100-106. DOI: https://doi.org/10.1016/j.ibiod.2015.04.001

Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259-267. DOI: https://doi.org/10.1016/j.aquaculture.2017.11.036

Boyd, C. E., & Tucker, C. S. (1992). Water quality and pond soil analyses for aquaculture. Auburn, AL: Auburn University.

Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, D.C.: American Public Health Association (APHA); American Water Works Association and Water Environmental Federation.

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. DOI: https://doi.org/10.1016/j.aquaculture.2006.03.019

Ferreira, L. M., Lara, G., Wasielesky Jr, W., & Abreu, P. C. (2016). Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system. Aquaculture International, 24(4), 921-930. DOI: https://doi.org/10.1007/s10499-015-9961-0

Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12(1), 54-73. DOI: https://doi.org/10.21061/ijra.v12i1.1354

Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34(3), 344-363. DOI: https://doi.org/10.1016/j.aquaeng.2005.08.009

Krummenauer, D., Seifert Junior, C. A., Poersch, L. H. D. S., Foes, G. K., Lara, G. R. D., & Wasielesky Jr, W. (2012). Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlântica, 34(2), 103-111. DOI: https://doi.org/10.5088/atl.2012.34.2.103

Krummenauer, D., Samocha, T., Poersch, L., Lara, G., & Wasielesky Jr, W. (2014). The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, 45, 3-14. DOI: https://doi.org/10.1111/jwas. 12093

Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-423, 1-7. DOI: https://doi.org/10.1016/j.aquaculture.2013.11.023

Malpartida-Pasco, J. J., Carvalho Filho, J. W., Espirito Santo, C. M., & Vinatea, L. (2018). Production of Nile tilapia Oreochromis niloticus grown in BFT using two aeration systems. Aquaculture Research, 49(1), 222-231. DOI: https://doi.org/10.1111/are.13451

Pérez-Fuentes, J. A., Hernández-Vergara, M. P., Pérez-Rostro, C. I., & Fogel, I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452, 247-251. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.010

Ray, A. J., & Lotz, J. M. (2014). Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquacultural Engineering, 63, 54-61. DOI: https://doi.org/10.1016/j.aquaeng.2014.10.001

Ren, W., Li, L., Dong, S., Tian, X., & Xue, Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498, 123-131. DOI: https://doi.org/10.1016/j.aquaculture.2018.08.043

Rezende, P. C., Schleder, D. D., Silva, H. V., Henriques, F. M., Lorenzo, M. A., Seiffert, W. Q., & Nascimento Vieira, F. (2018). Prenursery of the pacific white shrimp in a biofloc system using different artificial substrates. Aquacultural Engineering, 82, 25-30. DOI: https://doi.org/10.1016/j.aquaeng.2018.04.001

Schveitzer, R., Arantes, R., Costódio, P. F. S., Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. DOI: https://doi.org/10.1016/j.aquaeng.2013.04.006

Serra, F. P., Gaona, C. A., Furtado, P. S., Poersch, L. H., & Wasielesky, W. (2015). Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International, 23, 1325-1339. DOI: https://doi.org/10.1007/s10499-015-9887-6

Souza, J., Cardozo, A., Wasielesky Jr, W., & Abreu, P. C. (2019). Does the biofloc size matter to the nitrification process in Biofloc Technology (BFT) systems? Aquaculture, 500, 443-450. DOI: https://doi.org/10.1016/j.aquaculture.2018.10.051

Tierney, T. W., & Ray, A. J. (2018). Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacultural Engineering, 82(1), 73-79. DOI: https://doi.org/10.1016/j.aquaeng.2018.06.002

Wang, M., & Lu, M. (2016). Tilapia polyculture: a global review. Aquaculture Research, 47(8), 2363-2374. DOI: https://doi.org/10.1111/are.12708

Xu, W. J., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453(1), 169-175. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.021

Zhang, N., Luo, G., Tan, H., Liu, W., & Hou, Z. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture, 464(1),710–717. DOI: https://doi.org/10.1016/j.aquaculture.2016.08.013

Publicado
2021-10-11
Como Citar
Lima, F. R. dos S., Cavalcante, D. de H., & Sá, M. V. do C. e. (2021). Fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking. Acta Scientiarum. Animal Sciences, 43(1), e53009. https://doi.org/10.4025/actascianimsci.v43i1.53009
Seção
Aquicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus