Effects of in ovo injection of nano-selenium and nano-zinc oxide and high eggshell temperature during late incubation on antioxidant activity, thyroid and glucocorticoid hormones and some blood metabolites in broiler hatchlings
Resumo
This experiment was conducted to evaluate the effects of in ovo injection of nano-selenium (Nano-Se) and nano-zinc oxide (Nano-ZnO) and high eggshell temperature (EST) during late incubation on blood parameters of broiler hatchlings. A total of 750 fertile eggs, were weighed and randomly distributed among 5 treatment groups on each of 5 replicate tray levels. The injection was performed on 17 d of incubation. Treatments included of: 1) Eggs not injected and incubated at normal EST (control); 2) Eggs not injected and incubated at high EST; 3) Eggs injected NaCl solution and incubated at high EST (sham); 4) Eggs injected NaCl solution containing 40 µg Nano-Se and incubated at high EST; 5) Eggs injected NaCl solution containing 500 µg Nano-ZnO and incubated at high EST. EST of 37.8ºC (normal) or 38.9ºC (high) was applied from d 19 to 21 of incubation. In ovo injection of Nano-Se and Nano-ZnO significantly increased activity of GSH-Px and SOD and total protein, but decreased the levels of corticosterone, cortisol, T4 and T3 at high EST. Injection of Nano-Se and Nano-ZnO had a significant role in alleviating the negative effects of high temperature incubation and heat stress by increased antioxidant activity and reduced oxidative stress.
Downloads
Referências
Al-Zhgoul, M.-B., Dalab, A. E. S., Ababneh, M. M., Jawasreh, K. I., Al Busadah, K. A., & Ismail, Z. B. (2013). Thermal manipulation during chicken embryogenesis results in enhanced Hsp70 gene expression and the acquisition of thermotolerance. Research in Veterinary Science, 95(2), 502-507. doi: 10.1016/j.rvsc.2013.05.012
Ayo, J. O., Obidi, J. A., & Rekwot, P. I. (2011). Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern guinea savannah zone of nigeria: a review. ISRN Veterinary Science. doi: 10.5402/2011/838606
Azad, M. A. K., Kikusato, M., Zulkifli, I., & Toyomizu, M. (2013). Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress. British Poultry Science, 54(4), 503-509. doi: 10.1080/00071668.2013.801067
Bagheri, M., Golchin-Gelehdooni, S., Mohamadi, M., & Tabidian, A. (2015). Comparative effects of nano, mineral and organic selenium on growth performance, immunity responses and total antioxidant activity in broiler chickens. International Journal of Biology, Pharmacy and Allied Sciences, 4(2), 583-595.
Boostani, A., Sadeghi, A. A., Mousavi, S. N., Chamani, M., & Kashan, N. (2015). Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livestock Science, 178, 330-336. doi: 10.1016/j.livsci.2015.05.004
Christensen, V. L., Wineland, M. J., Yildrum, I., Fairchild, B. D., Ort, D. T., & Mann, K. M. (2005). Incubator temperature and oxygen concentrations during the plateau stage in oxygen uptake affect turkey embryo plasma T3 and T4 concentrations. International Journal of Poultry Science, 4(5), 268-273. doi: 10.3923/ijps.2005.268.273
Debonne, M., Baarendse, P. J. J., Van Den Brand, H., Kemp, B., Bruggeman, V., & Decuypere, E. (2008). Involvement of the hypothalamic-pituitary-thyroid axis and its interaction with the hypothalamic-pituitary-adrenal axis in the ontogeny of avian thermoregulation: a review. World's Poultry Science Journal, 64(3), 309-321. doi: 10.1017/S0043933908000056
Doumas, B. T., Bayse, D. D., Borner, K., Carter, R. J., Elevitch, F., Garber, C. C., ... Peters, T. (1981). A candidate reference method for determination of total protein in serum. II. Test for transferability. Clinical Chemistry, 27(10), 1651-1654.
Duntas, L. H. (2010). Selenium and the thyroid: a close-knit connection. The Journal of Clinical Endocrinology & Metabolism, 95(12), 5180-5188. doi: 10.1210/jc.2010-0191
French, N. A. (2000). Effect of short periods of high incubation temperature on hatchability and incidence of embryo pathology of turkey eggs. British Poultry Science, 41(3), 377-382. doi: 10.1080/713654928
Ghazanfarpoor, R., Talebi, E., & Abedi, A. (2014). Contemplation upon nano red selenium and sodium selenite on antioxidant enzymes in quail under heat stress. The International Journal of Science Inventions Today, 3, 556-565.
Habibian, M., Ghazi, S., Moeini, M. M., & Abdolmohammadi, A. (2014). Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. International Journal of Biometeorology, 58(5), 741-752. doi: 10.1007/s00484-013-0654-y
Hajati, H., Hassanabadi, A., Golian, A., Nassiri-Moghaddam, H., & Nassiri, M. R. (2014). The effect of in ovo injection of grape seed extract and vitamin C on hatchability, antioxidant activity, yolk sac absorption, performance and ileal micro flora of broiler chickens. Research Opinions in Animal and Veterinary Sciences, 4(12), 633-638.
Joshua, P. P., Valli, C., & Balakrishnan, V. (2016). Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Veterinary World, 9(3), 287-294. doi: 10.14202/vetworld.2016.287-294
Klasing, K. C., Laurin, D. E., Peng, R. K., & Fry, D. M. (1987). Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. The Journal of nutrition, 117(9), 1629-1637. doi: 10.1093/jn/117.9.1629
Kucharska-Gaca, J., Kowalska, E., & Dębowska, M. (2017). In ovo feeding–technology of the future–a review. Annals of Animal Science, 17(4), 979-992. doi: 10.1515/aoas-2017-0004
Kucuk, O., Sahin, N., & Sahin, K. (2003). Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological Trace Element Research, 94(3), 225-235. doi: 10.1385/BTER:94:3:225
Lee, S. H., Lillehoj, H. S., Jang, S. I., Jeong, M. S., Xu, S. Z., Kim, J. B., ... Bravo, D. M. (2014). Effects of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens. Poultry Science, 93(5), 1113-1121. doi: 10.3382/ps.2013-03770
Liu, Z. H., Lu, L., Wang, R. L., Lei, H. L., Li, S. F., Zhang, L. Y., & Luo, X. G. (2015). Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poultry Science, 94(11), 2686-2694. doi: 10.3382/ps/pev251
Moran Junior, E. T. (2007). Nutrition of the developing embryo and hatchling. Poultry Science, 86(5), 1043-1049.
Morita, V. S., Almeida, V. R., Matos Junior, J. B., Vicentini, T. I., Van Den Brand, H., & Boleli, I. C. (2016). Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase. Poultry Science, 95(8), 1795-1804. doi: 10.3382/ps/pew071
Mustacich, D., & Powis, G. (2000). Thioredoxin reductase. Biochemical Journal, 346(1), 1-8.
Ognik, K., & Sembratowicz, I. (2012). Stress as a factor modifying the metabolism in poultry. A review. Annales UMCS, Zootechnica, 30(2), 34-43. doi: 10.2478/v10083-012-0010-4
Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: a review. Veterinarni Medicina, 52(1), 1-18. doi: 10.17221/2010-Vetmed
Piestun, Y., Halevy, O., & Yahav, S. (2009). Thermal manipulations of broiler embryos—The effect on thermoregulation and development during embryogenesis. Poultry Science, 88(12), 2677-2688. doi: 10.3382/ps.2009-00231
Rama Rao, S. V., Prakash, B., Raju, M. V. L. N., Panda, A. K., Kumari, R. K., & Reddy, E. P. K. (2016). Effect of supplementing organic forms of zinc, selenium and chromium on performance, anti-oxidant and immune responses in broiler chicken reared in tropical summer. Biological Trace Element Research, 172(2), 511-520. doi: 10.1007/s12011-015-0587-x
Rose, A. J., Vegiopoulos, A., & Herzig, S. (2010). Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. The Journal of Steroid Biochemistry and Molecular Biology, 122(1-3), 10-20. doi: 10.1016/j.jsbmb.2010.02.010
Sahin, K., & Kucuk, O. (2003). Zinc supplementation alleviates heat stress in laying Japanese quail. The Journal of Nutrition, 133(9), 2808-2811. doi: 10.1093/jn/133.9.2808
Sahin, K., Sahin, N., Kucuk, O., Hayirli, A., & Prasad, A. (2009). Role of dietary zinc in heat-stressed poultry: A review. Poultry Science, 88(10), 2176-2183. doi: 10.3382/PS.2008-00560
Sahin, K., Smith, M., Onderci, M., Sahin, N., Gursu, M., & Kucuk, O. (2005). Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84(6), 882-887. doi: 10.1093/ps/84.6.882
Sarıca, S., Aydın, H., & Ciftci, G. (2017). Effects of dietary supplementation of some antioxidants on liver antioxidant status and plasma biochemistry parameters of heat-stressed quail. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 773-779. doi: 10.24925/turjaf.v5i7.773-779.1182
Sozcu, A., & Ipek, A. (2015). Acute and chronic eggshell temperature manipulations during hatching term influence hatchability, broiler performance, and ascites incidence. Poultry Science, 94(2), 319-327. doi: 10.3382/ps/peu080
Statistical Analysis Software [SAS]. (2004). SAS/STAT User guide, Version 9.1.1. Cary, NC: SAS Institute Inc.
Surai, P. F. (2016). Antioxidant systems in poultry biology: superoxide dismutase. Journal of Animal Research and Nutrition, 1(18), 1-17. doi: 10.21767/2572-5459.100008
Surai, P. F., Fisinin, V. I., & Karadas, F. (2016). Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition, 2(1), 1-11. doi: 10.1016/j.aninu.2016.01.001
Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. doi: 10.1016/j.aninu.2016.06.003
Virden, W. S., & Kidd, M. T. (2009). Physiological stress in broilers: Ramifications on nutrient digestibility and responses. The Journal of Applied Poultry Research, 18(2), 338-347. doi: 10.3382/japr.2007-00093
Wang, Y., Wang, H., & Zhan, X. (2016). Effects of different dl‐selenomethionine and sodium selenite levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers. Journal of Animal Physiology and Animal Nutrition, 100(3), 431-439. doi: 10.1111/jpn.12396
Willemsen, H., Kamers, B., Dahlke, F., Han, H., Song, Z., Ansari Pirsaraei, Z., ... Everaert, N. (2010). High-and low-temperature manipulation during late incubation: effects on embryonic development, the hatching process, and metabolism in broilers. Poultry Science, 89(12), 2678-2690. doi: 10.3382/ps.2010-00853
Willemsen, H., Li, Y., Willems, E., Franssens, L., Wang, Y., Decuypere, E., & Everaert, N. (2011). Intermittent thermal manipulations of broiler embryos during late incubation and their immediate effect on the embryonic development and hatching process. Poultry Science, 90(6), 1302-1312. doi: 10.3382/ps.2011-01390
Xiao, X., Yuan, D., Wang, Y.-X., & Zhan, X.-A. (2016). The protective effects of different sources of maternal selenium on oxidative stressed chick embryo liver. Biological Trace Element Research, 172(1), 201-208. doi: 10.1007/s12011-015-0541-y
Yair, R., & Uni, Z. (2011). Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poultry Science, 90(7), 1523-1531. doi: 10.3382/ps.2010-01283
Yigit, A. A., Panda, A. K., & Cherian, G. (2014). The avian embryo and its antioxidant defence system. World's Poultry Science Journal, 70(3), 563-574. doi: 10.1017/S0043933914000610
Zeng, H., & Combs Junior, G. F. (2008). Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. The Journal of Nutritional Biochemistry, 19(1), 1-7. doi: 10.1016/j.jnutbio.2007.02.005
Zhang, L., Wang, J.-S., Wang, Q., Li, K.-X., Guo, T.-Y., Xiao, X., ... Zhan, X.-A. (2018). Effects of maternal zinc glycine on mortality, zinc concentration, and antioxidant status in a developing embryo and 1-day-old chick. Biological Trace Element Research, 181(2), 323-330. doi: 10.1007/s12011-017-1028-9
Zhao, C.-Y., Tan, S.-X., Xiao, X.-Y., Qiu, X.-S., Pan, J.-Q., & Tang, Z.-X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 160(3), 361-367. doi: 10.1007/s12011-014-0052-2
Zhu, Y., Liao, X., Lu, L., Li, W., Zhang, L., Ji, C., ... Luo, X. (2017). Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget, 8(12), 19814-19824. doi: 10.18632/oncotarget.15057
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.