Effects of in ovo injection of nano-selenium and nano-zinc oxide and high eggshell temperature during late incubation on antioxidant activity, thyroid and glucocorticoid hormones and some blood metabolites in broiler hatchlings

  • Meisam Shokraneh Islamic Azad University
  • Ali Asghar Sadeghi Islamic Azad University http://orcid.org/0000-0003-1560-5873
  • Seyed Naser Mousavi Islamic Azad University
  • Saeid Esmaeilkhanian Animal Science Research Institute of Iran
  • Mohammad Chamani Islamic Azad University

Resumo

This experiment was conducted to evaluate the effects of in ovo injection of nano-selenium (Nano-Se) and nano-zinc oxide (Nano-ZnO) and high eggshell temperature (EST) during late incubation on blood parameters of broiler hatchlings. A total of 750 fertile eggs, were weighed and randomly distributed among 5 treatment groups on each of 5 replicate tray levels. The injection was performed on 17 d of incubation. Treatments included of: 1) Eggs not injected and incubated at normal EST (control); 2) Eggs not injected and incubated at high EST; 3) Eggs injected NaCl solution and incubated at high EST (sham); 4) Eggs injected NaCl solution containing 40 µg Nano-Se and incubated at high EST; 5) Eggs injected NaCl solution containing 500 µg Nano-ZnO and incubated at high EST. EST of 37.8ºC (normal) or 38.9ºC (high) was applied from d 19 to 21 of incubation. In ovo injection of Nano-Se and Nano-ZnO significantly increased activity of GSH-Px and SOD and total protein, but decreased the levels of corticosterone, cortisol, T4 and T3 at high EST. Injection of Nano-Se and Nano-ZnO had a significant role in alleviating the negative effects of high temperature incubation and heat stress by increased antioxidant activity and reduced oxidative stress.

Downloads

Não há dados estatísticos.

Referências

Al-Zhgoul, M.-B., Dalab, A. E. S., Ababneh, M. M., Jawasreh, K. I., Al Busadah, K. A., & Ismail, Z. B. (2013). Thermal manipulation during chicken embryogenesis results in enhanced Hsp70 gene expression and the acquisition of thermotolerance. Research in Veterinary Science, 95(2), 502-507. doi: 10.1016/j.rvsc.2013.05.012

Ayo, J. O., Obidi, J. A., & Rekwot, P. I. (2011). Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern guinea savannah zone of nigeria: a review. ISRN Veterinary Science. doi: 10.5402/2011/838606

Azad, M. A. K., Kikusato, M., Zulkifli, I., & Toyomizu, M. (2013). Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress. British Poultry Science, 54(4), 503-509. doi: 10.1080/00071668.2013.801067

Bagheri, M., Golchin-Gelehdooni, S., Mohamadi, M., & Tabidian, A. (2015). Comparative effects of nano, mineral and organic selenium on growth performance, immunity responses and total antioxidant activity in broiler chickens. International Journal of Biology, Pharmacy and Allied Sciences, 4(2), 583-595.

Boostani, A., Sadeghi, A. A., Mousavi, S. N., Chamani, M., & Kashan, N. (2015). Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livestock Science, 178, 330-336. doi: 10.1016/j.livsci.2015.05.004

Christensen, V. L., Wineland, M. J., Yildrum, I., Fairchild, B. D., Ort, D. T., & Mann, K. M. (2005). Incubator temperature and oxygen concentrations during the plateau stage in oxygen uptake affect turkey embryo plasma T3 and T4 concentrations. International Journal of Poultry Science, 4(5), 268-273. doi: 10.3923/ijps.2005.268.273

Debonne, M., Baarendse, P. J. J., Van Den Brand, H., Kemp, B., Bruggeman, V., & Decuypere, E. (2008). Involvement of the hypothalamic-pituitary-thyroid axis and its interaction with the hypothalamic-pituitary-adrenal axis in the ontogeny of avian thermoregulation: a review. World's Poultry Science Journal, 64(3), 309-321. doi: 10.1017/S0043933908000056

Doumas, B. T., Bayse, D. D., Borner, K., Carter, R. J., Elevitch, F., Garber, C. C., ... Peters, T. (1981). A candidate reference method for determination of total protein in serum. II. Test for transferability. Clinical Chemistry, 27(10), 1651-1654.

Duntas, L. H. (2010). Selenium and the thyroid: a close-knit connection. The Journal of Clinical Endocrinology & Metabolism, 95(12), 5180-5188. doi: 10.1210/jc.2010-0191

French, N. A. (2000). Effect of short periods of high incubation temperature on hatchability and incidence of embryo pathology of turkey eggs. British Poultry Science, 41(3), 377-382. doi: 10.1080/713654928

Ghazanfarpoor, R., Talebi, E., & Abedi, A. (2014). Contemplation upon nano red selenium and sodium selenite on antioxidant enzymes in quail under heat stress. The International Journal of Science Inventions Today, 3, 556-565.

Habibian, M., Ghazi, S., Moeini, M. M., & Abdolmohammadi, A. (2014). Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. International Journal of Biometeorology, 58(5), 741-752. doi: 10.1007/s00484-013-0654-y

Hajati, H., Hassanabadi, A., Golian, A., Nassiri-Moghaddam, H., & Nassiri, M. R. (2014). The effect of in ovo injection of grape seed extract and vitamin C on hatchability, antioxidant activity, yolk sac absorption, performance and ileal micro flora of broiler chickens. Research Opinions in Animal and Veterinary Sciences, 4(12), 633-638.

Joshua, P. P., Valli, C., & Balakrishnan, V. (2016). Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Veterinary World, 9(3), 287-294. doi: 10.14202/vetworld.2016.287-294

Klasing, K. C., Laurin, D. E., Peng, R. K., & Fry, D. M. (1987). Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. The Journal of nutrition, 117(9), 1629-1637. doi: 10.1093/jn/117.9.1629

Kucharska-Gaca, J., Kowalska, E., & Dębowska, M. (2017). In ovo feeding–technology of the future–a review. Annals of Animal Science, 17(4), 979-992. doi: 10.1515/aoas-2017-0004

Kucuk, O., Sahin, N., & Sahin, K. (2003). Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological Trace Element Research, 94(3), 225-235. doi: 10.1385/BTER:94:3:225

Lee, S. H., Lillehoj, H. S., Jang, S. I., Jeong, M. S., Xu, S. Z., Kim, J. B., ... Bravo, D. M. (2014). Effects of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens. Poultry Science, 93(5), 1113-1121. doi: 10.3382/ps.2013-03770

Liu, Z. H., Lu, L., Wang, R. L., Lei, H. L., Li, S. F., Zhang, L. Y., & Luo, X. G. (2015). Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poultry Science, 94(11), 2686-2694. doi: 10.3382/ps/pev251

Moran Junior, E. T. (2007). Nutrition of the developing embryo and hatchling. Poultry Science, 86(5), 1043-1049.

Morita, V. S., Almeida, V. R., Matos Junior, J. B., Vicentini, T. I., Van Den Brand, H., & Boleli, I. C. (2016). Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase. Poultry Science, 95(8), 1795-1804. doi: 10.3382/ps/pew071

Mustacich, D., & Powis, G. (2000). Thioredoxin reductase. Biochemical Journal, 346(1), 1-8.

Ognik, K., & Sembratowicz, I. (2012). Stress as a factor modifying the metabolism in poultry. A review. Annales UMCS, Zootechnica, 30(2), 34-43. doi: 10.2478/v10083-012-0010-4

Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: a review. Veterinarni Medicina, 52(1), 1-18. doi: 10.17221/2010-Vetmed

Piestun, Y., Halevy, O., & Yahav, S. (2009). Thermal manipulations of broiler embryos—The effect on thermoregulation and development during embryogenesis. Poultry Science, 88(12), 2677-2688. doi: 10.3382/ps.2009-00231

Rama Rao, S. V., Prakash, B., Raju, M. V. L. N., Panda, A. K., Kumari, R. K., & Reddy, E. P. K. (2016). Effect of supplementing organic forms of zinc, selenium and chromium on performance, anti-oxidant and immune responses in broiler chicken reared in tropical summer. Biological Trace Element Research, 172(2), 511-520. doi: 10.1007/s12011-015-0587-x

Rose, A. J., Vegiopoulos, A., & Herzig, S. (2010). Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. The Journal of Steroid Biochemistry and Molecular Biology, 122(1-3), 10-20. doi: 10.1016/j.jsbmb.2010.02.010

Sahin, K., & Kucuk, O. (2003). Zinc supplementation alleviates heat stress in laying Japanese quail. The Journal of Nutrition, 133(9), 2808-2811. doi: 10.1093/jn/133.9.2808

Sahin, K., Sahin, N., Kucuk, O., Hayirli, A., & Prasad, A. (2009). Role of dietary zinc in heat-stressed poultry: A review. Poultry Science, 88(10), 2176-2183. doi: 10.3382/PS.2008-00560

Sahin, K., Smith, M., Onderci, M., Sahin, N., Gursu, M., & Kucuk, O. (2005). Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84(6), 882-887. doi: 10.1093/ps/84.6.882

Sarıca, S., Aydın, H., & Ciftci, G. (2017). Effects of dietary supplementation of some antioxidants on liver antioxidant status and plasma biochemistry parameters of heat-stressed quail. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 773-779. doi: 10.24925/turjaf.v5i7.773-779.1182

Sozcu, A., & Ipek, A. (2015). Acute and chronic eggshell temperature manipulations during hatching term influence hatchability, broiler performance, and ascites incidence. Poultry Science, 94(2), 319-327. doi: 10.3382/ps/peu080

Statistical Analysis Software [SAS]. (2004). SAS/STAT User guide, Version 9.1.1. Cary, NC: SAS Institute Inc.

Surai, P. F. (2016). Antioxidant systems in poultry biology: superoxide dismutase. Journal of Animal Research and Nutrition, 1(18), 1-17. doi: 10.21767/2572-5459.100008

Surai, P. F., Fisinin, V. I., & Karadas, F. (2016). Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition, 2(1), 1-11. doi: 10.1016/j.aninu.2016.01.001

Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. doi: 10.1016/j.aninu.2016.06.003

Virden, W. S., & Kidd, M. T. (2009). Physiological stress in broilers: Ramifications on nutrient digestibility and responses. The Journal of Applied Poultry Research, 18(2), 338-347. doi: 10.3382/japr.2007-00093

Wang, Y., Wang, H., & Zhan, X. (2016). Effects of different dl‐selenomethionine and sodium selenite levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers. Journal of Animal Physiology and Animal Nutrition, 100(3), 431-439. doi: 10.1111/jpn.12396

Willemsen, H., Kamers, B., Dahlke, F., Han, H., Song, Z., Ansari Pirsaraei, Z., ... Everaert, N. (2010). High-and low-temperature manipulation during late incubation: effects on embryonic development, the hatching process, and metabolism in broilers. Poultry Science, 89(12), 2678-2690. doi: 10.3382/ps.2010-00853

Willemsen, H., Li, Y., Willems, E., Franssens, L., Wang, Y., Decuypere, E., & Everaert, N. (2011). Intermittent thermal manipulations of broiler embryos during late incubation and their immediate effect on the embryonic development and hatching process. Poultry Science, 90(6), 1302-1312. doi: 10.3382/ps.2011-01390

Xiao, X., Yuan, D., Wang, Y.-X., & Zhan, X.-A. (2016). The protective effects of different sources of maternal selenium on oxidative stressed chick embryo liver. Biological Trace Element Research, 172(1), 201-208. doi: 10.1007/s12011-015-0541-y

Yair, R., & Uni, Z. (2011). Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poultry Science, 90(7), 1523-1531. doi: 10.3382/ps.2010-01283

Yigit, A. A., Panda, A. K., & Cherian, G. (2014). The avian embryo and its antioxidant defence system. World's Poultry Science Journal, 70(3), 563-574. doi: 10.1017/S0043933914000610

Zeng, H., & Combs Junior, G. F. (2008). Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. The Journal of Nutritional Biochemistry, 19(1), 1-7. doi: 10.1016/j.jnutbio.2007.02.005

Zhang, L., Wang, J.-S., Wang, Q., Li, K.-X., Guo, T.-Y., Xiao, X., ... Zhan, X.-A. (2018). Effects of maternal zinc glycine on mortality, zinc concentration, and antioxidant status in a developing embryo and 1-day-old chick. Biological Trace Element Research, 181(2), 323-330. doi: 10.1007/s12011-017-1028-9

Zhao, C.-Y., Tan, S.-X., Xiao, X.-Y., Qiu, X.-S., Pan, J.-Q., & Tang, Z.-X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 160(3), 361-367. doi: 10.1007/s12011-014-0052-2

Zhu, Y., Liao, X., Lu, L., Li, W., Zhang, L., Ji, C., ... Luo, X. (2017). Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget, 8(12), 19814-19824. doi: 10.18632/oncotarget.15057

Publicado
2020-01-30
Como Citar
Shokraneh, M., Sadeghi, A. A., Mousavi, S. N., Esmaeilkhanian, S., & Chamani, M. (2020). Effects of in ovo injection of nano-selenium and nano-zinc oxide and high eggshell temperature during late incubation on antioxidant activity, thyroid and glucocorticoid hormones and some blood metabolites in broiler hatchlings. Acta Scientiarum. Animal Sciences, 42(1), e46029. https://doi.org/10.4025/actascianimsci.v42i1.46029
Seção
Nutrição de Não-Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus