Existence and upper semicontinuity of global attractors for a $p$-Laplacian inclusion

  • Jacson Simsen Universidade Federal de Itajubá Instituto de Matemática e Computação
  • Edson N. Neres Junior Universidade Federal de Itajubá Instituto de Matemática e Computação

Résumé

In this work we study the asymptotic behavior of a $p$-Laplacian
inclusion of the form $\displaystyle\frac{\partial
u_\lambda}{\partial t} - div(D^\lambda|\nabla
u_\lambda|^{p-2}\nabla u_\lambda) + |u_\lambda|^{p-2}u_\lambda$ $\in F(u_\lambda) + h,$ where $p>2$, $h\in L^2(\Omega),$ with
$\Omega\subset\mathbb{R}^n,\; n\geq 1,$ a bounded smooth domain,
$D^\lambda \in L^\infty(\Omega)$, $\infty > M\geq D^\lambda(x)
\geq \sigma >0$ a.e. in $\Omega$, $\lambda \in [0,\infty)$ and
$D^\lambda\rightarrow D^{\lambda_1}$ in $L^\infty(\Omega)$ as
$\lambda \to \lambda_1$, $F:\mathcal{D}(F)\subset
L^{2}(\Omega)\rightarrow\mathcal{P}(L^{2}(\Omega))$, given by
$F(y(\cdot))=\{\xi(\cdot)\in L^{2}(\Omega):\xi(x)\in
f(y(x))\;x\mbox{-a.e. in}\; \Omega\}$ with
$f:\mathbb{R}\rightarrow\mathcal{C}_{v}(\mathbb{R})$ Lipschitz
($\mathcal{C}_{v}(\mathbb{R})$ is the set of all nonempty,
bounded, closed, convex subsets of $\mathbb{R}$) be a multivalued
map. We prove the existence of a global attractor in $L^2(\Omega)$
for each positive finite diffusion coefficient and we show that
the family of attractors behaves upper semicontinuously on
positive finite diffusion parameters.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Jacson Simsen, Universidade Federal de Itajubá Instituto de Matemática e Computação
Professor at IMC-UNIFEI
Publiée
2014-05-13
Rubrique
Articles