Existence and upper semicontinuity of global attractors for a $p$-Laplacian inclusion
Résumé
In this work we study the asymptotic behavior of a $p$-Laplacian
inclusion of the form $\displaystyle\frac{\partial
u_\lambda}{\partial t} - div(D^\lambda|\nabla
u_\lambda|^{p-2}\nabla u_\lambda) + |u_\lambda|^{p-2}u_\lambda$ $\in F(u_\lambda) + h,$ where $p>2$, $h\in L^2(\Omega),$ with
$\Omega\subset\mathbb{R}^n,\; n\geq 1,$ a bounded smooth domain,
$D^\lambda \in L^\infty(\Omega)$, $\infty > M\geq D^\lambda(x)
\geq \sigma >0$ a.e. in $\Omega$, $\lambda \in [0,\infty)$ and
$D^\lambda\rightarrow D^{\lambda_1}$ in $L^\infty(\Omega)$ as
$\lambda \to \lambda_1$, $F:\mathcal{D}(F)\subset
L^{2}(\Omega)\rightarrow\mathcal{P}(L^{2}(\Omega))$, given by
$F(y(\cdot))=\{\xi(\cdot)\in L^{2}(\Omega):\xi(x)\in
f(y(x))\;x\mbox{-a.e. in}\; \Omega\}$ with
$f:\mathbb{R}\rightarrow\mathcal{C}_{v}(\mathbb{R})$ Lipschitz
($\mathcal{C}_{v}(\mathbb{R})$ is the set of all nonempty,
bounded, closed, convex subsets of $\mathbb{R}$) be a multivalued
map. We prove the existence of a global attractor in $L^2(\Omega)$
for each positive finite diffusion coefficient and we show that
the family of attractors behaves upper semicontinuously on
positive finite diffusion parameters.
Téléchargements
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).