Existence and upper semicontinuity of global attractors for a $p$-Laplacian inclusion

  • Jacson Simsen Universidade Federal de Itajubá Instituto de Matemática e Computação
  • Edson N. Neres Junior Universidade Federal de Itajubá Instituto de Matemática e Computação

Resumen

In this work we study the asymptotic behavior of a $p$-Laplacian
inclusion of the form $\displaystyle\frac{\partial
u_\lambda}{\partial t} - div(D^\lambda|\nabla
u_\lambda|^{p-2}\nabla u_\lambda) + |u_\lambda|^{p-2}u_\lambda$ $\in F(u_\lambda) + h,$ where $p>2$, $h\in L^2(\Omega),$ with
$\Omega\subset\mathbb{R}^n,\; n\geq 1,$ a bounded smooth domain,
$D^\lambda \in L^\infty(\Omega)$, $\infty > M\geq D^\lambda(x)
\geq \sigma >0$ a.e. in $\Omega$, $\lambda \in [0,\infty)$ and
$D^\lambda\rightarrow D^{\lambda_1}$ in $L^\infty(\Omega)$ as
$\lambda \to \lambda_1$, $F:\mathcal{D}(F)\subset
L^{2}(\Omega)\rightarrow\mathcal{P}(L^{2}(\Omega))$, given by
$F(y(\cdot))=\{\xi(\cdot)\in L^{2}(\Omega):\xi(x)\in
f(y(x))\;x\mbox{-a.e. in}\; \Omega\}$ with
$f:\mathbb{R}\rightarrow\mathcal{C}_{v}(\mathbb{R})$ Lipschitz
($\mathcal{C}_{v}(\mathbb{R})$ is the set of all nonempty,
bounded, closed, convex subsets of $\mathbb{R}$) be a multivalued
map. We prove the existence of a global attractor in $L^2(\Omega)$
for each positive finite diffusion coefficient and we show that
the family of attractors behaves upper semicontinuously on
positive finite diffusion parameters.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jacson Simsen, Universidade Federal de Itajubá Instituto de Matemática e Computação
Professor at IMC-UNIFEI
Publicado
2014-05-13
Sección
Articles