\mu - k - Connectedness in GTS
Resumo
Csaszar [5] introduced \mu - semi - open sets, \mu - preopen sets, \mu - \alpha - open sets and \mu - \beta - open sets in a GTS (X, \tau). By using the \mu - \sigma - closure, \mu - \pi - closure, \mu - \alpha - closure and \mu - \beta - closure in (X, \tau), we introduce and investigate the notions \mu - k - separated sets and \mu - k - connected sets in (X, \tau).Downloads
Referências
Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65-87.
Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.
Á. Császár, γ - connected sets, Acta Math. Hungar., 101 (4) (2003), 273-279.
Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 75 (2005), 53-66.
C. Cao, J. Yan, W. Wang and B. Wang, Some generalized continuities functions on generalized topological spaces Hacettepe J. Math. Stat., 42(2) (2013), 159-163.
E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hun- garica, 133 (1-2) (2011), 140-147.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).