\mu - k - Connectedness in GTS

Keywords: \mu - k - separated, \mu - k - connected, \mu - k - component

Abstract

Csaszar [5] introduced \mu - semi - open sets, \mu - preopen sets, \mu - \alpha - open sets and \mu - \beta - open sets in a GTS (X, \tau). By using the \mu - \sigma - closure, \mu - \pi - closure, \mu - \alpha - closure and \mu - \beta - closure in (X, \tau), we introduce and investigate the notions \mu - k - separated sets and \mu - k - connected sets in (X, \tau).

Downloads

Download data is not yet available.

Author Biographies

Shyamapada Modak, University of Gour Banga

Department of Mathematics

 

Takashi Noiri, Yatsushiro College of Technology

Department of Mathematics

Professor

References

Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65-87.

Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.

Á. Császár, γ - connected sets, Acta Math. Hungar., 101 (4) (2003), 273-279.

Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 75 (2005), 53-66.

C. Cao, J. Yan, W. Wang and B. Wang, Some generalized continuities functions on generalized topological spaces Hacettepe J. Math. Stat., 42(2) (2013), 159-163.

E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hun- garica, 133 (1-2) (2011), 140-147.

Published
2014-08-19
Section
Articles