\mu - k - Connectedness in GTS

Resumo

Csaszar [5] introduced \mu - semi - open sets, \mu - preopen sets, \mu - \alpha - open sets and \mu - \beta - open sets in a GTS (X, \tau). By using the \mu - \sigma - closure, \mu - \pi - closure, \mu - \alpha - closure and \mu - \beta - closure in (X, \tau), we introduce and investigate the notions \mu - k - separated sets and \mu - k - connected sets in (X, \tau).

Downloads

Não há dados estatísticos.

Biografia do Autor

Shyamapada Modak, University of Gourbanga

Department of Mathematics

 

Takashi Noiri, Yatsushiro College of Technology

Department of Mathematics

Professor

Referências

Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65-87.

Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.

Á. Császár, γ - connected sets, Acta Math. Hungar., 101 (4) (2003), 273-279.

Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 75 (2005), 53-66.

C. Cao, J. Yan, W. Wang and B. Wang, Some generalized continuities functions on generalized topological spaces Hacettepe J. Math. Stat., 42(2) (2013), 159-163.

E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hun- garica, 133 (1-2) (2011), 140-147.

Publicado
2014-08-19
Seção
Artigos