\mu - k - Connectedness in GTS

Résumé

Csaszar [5] introduced \mu - semi - open sets, \mu - preopen sets, \mu - \alpha - open sets and \mu - \beta - open sets in a GTS (X, \tau). By using the \mu - \sigma - closure, \mu - \pi - closure, \mu - \alpha - closure and \mu - \beta - closure in (X, \tau), we introduce and investigate the notions \mu - k - separated sets and \mu - k - connected sets in (X, \tau).

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Shyamapada Modak, University of Gour Banga

Department of Mathematics

 

Takashi Noiri, Yatsushiro College of Technology

Department of Mathematics

Professor

Références

Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65-87.

Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.

Á. Császár, γ - connected sets, Acta Math. Hungar., 101 (4) (2003), 273-279.

Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 75 (2005), 53-66.

C. Cao, J. Yan, W. Wang and B. Wang, Some generalized continuities functions on generalized topological spaces Hacettepe J. Math. Stat., 42(2) (2013), 159-163.

E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hun- garica, 133 (1-2) (2011), 140-147.

Publiée
2014-08-19
Rubrique
Research Articles