On the structure of split regular -Hom-Jordan-Lie superalgebras
Resumo
In this paper we study the structure of arbitrary split regular -Hom-Jordan-Lie super algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular -Hom-Jordan-Lie superalgebra L is of the form
L = H
[
]
Σ
[
]2= V
[
]; with H
[
] a graded linear subspace of the graded abelian subalgebra H and any V [ ]; a well-described ideal of L; satisfying [V [ ]; V []] = 0 if [
] ̸= []: Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split regular -Hom-Jordan-Lie superalgebra.
Downloads
Referências
H. Albuquerque, E. Barreiro. A. J. Calderon and J, M. Sanchez, On split Hom-Lie superalgebras, Journal of Geometry and Physics, 128, 1-11, (2018). https://doi.org/10.1016/j.geomphys.2018.01.025
M. J. Aragon and A. J. Calderon, Split regular Hom-Lie algebras, J. Lie theory, 25, no. 4, 813-836, (2011).
Ammar F, Makhlouf A, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra 324 (7), 1513-1528, (2010). https://doi.org/10.1016/j.jalgebra.2010.06.014
Aizawa N, Sato H, q−deformation of the Virasoro algebra with centeral extension, Physics Letters B 256, 185-190, (1991). https://doi.org/10.1016/0370-2693(91)90671-C
A. J. Calderon, split regular Hom-Lie algebras, J. Lie Theory 25, no. 3, 875-888, (2015).
Y. Cao and L. Chen, On split regular δ-Hom-Jordan-Lie algebras, https://www.researchgate.net/publication/304424601.
A. Connes, Non-commutative diff geometry, publi, I.H.E.S. 62, 257 (1986). https://doi.org/10.1007/BF02698807
A. J. Calderon, J. M. Sanchez, On the structur of split Lie color algebras, Linear Algebra Appl. 436(2), 307-315,(2012). https://doi.org/10.1016/j.laa.2011.02.003
A. J. Calderon and J. Sanchez, On the structur of split involutive Lie algebras, Rocky Mountain J. Math. 44(5), 1445-1455, (2014). https://doi.org/10.1216/RMJ-2014-44-5-1445
Guo W, Chen L, Algebra of quotients of Jordan Lie algebras, Comm. Algebra 44(9), 3788-3795, (2016). https://doi.org/10.1080/00927872.2015.1087009
Hartwing J. T, Larsoon D, Silvestrov S, Quassi-hom-Lie algebras and central extensions and 2-cocycle-like identities, J. Algebra 288(2), 321-344, (2005). https://doi.org/10.1016/j.jalgebra.2005.02.032
Hartwing J. T, Larsoson D, Silvestrov S, Deformations of Lie algebras using σ−derivations, J. Algebra 295, 314-361, (2006). https://doi.org/10.1016/j.jalgebra.2005.07.036
Khalili V, On the structure of split involutive Hom-Lie color algebras, J. Uni'on Matem'atica Argentina 60(1), 61-77, (2019). https://doi.org/10.33044/revuma.v60n1a05
Ma L, Chen L, Zhao J, δ−Hom-Jordan Lie superalgebr, Comm. Algebra 46, no. 4, , (2017). https://doi.org/10.1080/00927872.2017.1354008
Okubo S, Kamiya N, Jordan Lie superalgebra and Jordan-Lie triple system.. J. Algebra 198(2), 388-411, (1997). https://doi.org/10.1006/jabr.1997.7144
J. Zhang, C. Zhang and Y. Cao On the structure of split involutive regular Hom-Lie algebras, Operator and Matrices, Vol. 11, 5783-792, (2017). https://doi.org/10.7153/oam-2017-11-55
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).