On the structure of split regular -Hom-Jordan-Lie superalgebras

Resumen

In this paper we study the structure of arbitrary split regular -Hom-Jordan-Lie super algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular -Hom-Jordan-Lie superalgebra L is of the form

L = H

[
]

 

Σ

[
]2= V

[
]; with

[
] a graded linear subspace of the graded abelian subalgebra H and any [ ]; a well-described ideal of L; satisfying [[ ]; V []] = 0 if [
] ̸= []: Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split regular -Hom-Jordan-Lie superalgebra.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Valiollah Khalili, Arak University

Dep. of Mathematics. Faculty of Sciences

Citas

H. Albuquerque, E. Barreiro. A. J. Calderon and J, M. Sanchez, On split Hom-Lie superalgebras, Journal of Geometry and Physics, 128, 1-11, (2018). https://doi.org/10.1016/j.geomphys.2018.01.025

M. J. Aragon and A. J. Calderon, Split regular Hom-Lie algebras, J. Lie theory, 25, no. 4, 813-836, (2011).

Ammar F, Makhlouf A, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra 324 (7), 1513-1528, (2010). https://doi.org/10.1016/j.jalgebra.2010.06.014

Aizawa N, Sato H, q−deformation of the Virasoro algebra with centeral extension, Physics Letters B 256, 185-190, (1991). https://doi.org/10.1016/0370-2693(91)90671-C

A. J. Calderon, split regular Hom-Lie algebras, J. Lie Theory 25, no. 3, 875-888, (2015).

Y. Cao and L. Chen, On split regular δ-Hom-Jordan-Lie algebras, https://www.researchgate.net/publication/304424601.

A. Connes, Non-commutative diff geometry, publi, I.H.E.S. 62, 257 (1986). https://doi.org/10.1007/BF02698807

A. J. Calderon, J. M. Sanchez, On the structur of split Lie color algebras, Linear Algebra Appl. 436(2), 307-315,(2012). https://doi.org/10.1016/j.laa.2011.02.003

A. J. Calderon and J. Sanchez, On the structur of split involutive Lie algebras, Rocky Mountain J. Math. 44(5), 1445-1455, (2014). https://doi.org/10.1216/RMJ-2014-44-5-1445

Guo W, Chen L, Algebra of quotients of Jordan Lie algebras, Comm. Algebra 44(9), 3788-3795, (2016). https://doi.org/10.1080/00927872.2015.1087009

Hartwing J. T, Larsoon D, Silvestrov S, Quassi-hom-Lie algebras and central extensions and 2-cocycle-like identities, J. Algebra 288(2), 321-344, (2005). https://doi.org/10.1016/j.jalgebra.2005.02.032

Hartwing J. T, Larsoson D, Silvestrov S, Deformations of Lie algebras using σ−derivations, J. Algebra 295, 314-361, (2006). https://doi.org/10.1016/j.jalgebra.2005.07.036

Khalili V, On the structure of split involutive Hom-Lie color algebras, J. Uni'on Matem'atica Argentina 60(1), 61-77, (2019). https://doi.org/10.33044/revuma.v60n1a05

Ma L, Chen L, Zhao J, δ−Hom-Jordan Lie superalgebr, Comm. Algebra 46, no. 4, , (2017). https://doi.org/10.1080/00927872.2017.1354008

Okubo S, Kamiya N, Jordan Lie superalgebra and Jordan-Lie triple system.. J. Algebra 198(2), 388-411, (1997). https://doi.org/10.1006/jabr.1997.7144

J. Zhang, C. Zhang and Y. Cao On the structure of split involutive regular Hom-Lie algebras, Operator and Matrices, Vol. 11, 5783-792, (2017). https://doi.org/10.7153/oam-2017-11-55

Publicado
2022-12-26
Sección
Articles