On the structure of split regular -Hom-Jordan-Lie superalgebras

Résumé

In this paper we study the structure of arbitrary split regular -Hom-Jordan-Lie super algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular -Hom-Jordan-Lie superalgebra L is of the form

L = H

[
]

 

Σ

[
]2= V

[
]; with

[
] a graded linear subspace of the graded abelian subalgebra H and any [ ]; a well-described ideal of L; satisfying [[ ]; V []] = 0 if [
] ̸= []: Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split regular -Hom-Jordan-Lie superalgebra.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Valiollah Khalili, Arak University

Dep. of Mathematics. Faculty of Sciences

Références

H. Albuquerque, E. Barreiro. A. J. Calderon and J, M. Sanchez, On split Hom-Lie superalgebras, Journal of Geometry and Physics, 128, 1-11, (2018). https://doi.org/10.1016/j.geomphys.2018.01.025

M. J. Aragon and A. J. Calderon, Split regular Hom-Lie algebras, J. Lie theory, 25, no. 4, 813-836, (2011).

Ammar F, Makhlouf A, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra 324 (7), 1513-1528, (2010). https://doi.org/10.1016/j.jalgebra.2010.06.014

Aizawa N, Sato H, q−deformation of the Virasoro algebra with centeral extension, Physics Letters B 256, 185-190, (1991). https://doi.org/10.1016/0370-2693(91)90671-C

A. J. Calderon, split regular Hom-Lie algebras, J. Lie Theory 25, no. 3, 875-888, (2015).

Y. Cao and L. Chen, On split regular δ-Hom-Jordan-Lie algebras, https://www.researchgate.net/publication/304424601.

A. Connes, Non-commutative diff geometry, publi, I.H.E.S. 62, 257 (1986). https://doi.org/10.1007/BF02698807

A. J. Calderon, J. M. Sanchez, On the structur of split Lie color algebras, Linear Algebra Appl. 436(2), 307-315,(2012). https://doi.org/10.1016/j.laa.2011.02.003

A. J. Calderon and J. Sanchez, On the structur of split involutive Lie algebras, Rocky Mountain J. Math. 44(5), 1445-1455, (2014). https://doi.org/10.1216/RMJ-2014-44-5-1445

Guo W, Chen L, Algebra of quotients of Jordan Lie algebras, Comm. Algebra 44(9), 3788-3795, (2016). https://doi.org/10.1080/00927872.2015.1087009

Hartwing J. T, Larsoon D, Silvestrov S, Quassi-hom-Lie algebras and central extensions and 2-cocycle-like identities, J. Algebra 288(2), 321-344, (2005). https://doi.org/10.1016/j.jalgebra.2005.02.032

Hartwing J. T, Larsoson D, Silvestrov S, Deformations of Lie algebras using σ−derivations, J. Algebra 295, 314-361, (2006). https://doi.org/10.1016/j.jalgebra.2005.07.036

Khalili V, On the structure of split involutive Hom-Lie color algebras, J. Uni'on Matem'atica Argentina 60(1), 61-77, (2019). https://doi.org/10.33044/revuma.v60n1a05

Ma L, Chen L, Zhao J, δ−Hom-Jordan Lie superalgebr, Comm. Algebra 46, no. 4, , (2017). https://doi.org/10.1080/00927872.2017.1354008

Okubo S, Kamiya N, Jordan Lie superalgebra and Jordan-Lie triple system.. J. Algebra 198(2), 388-411, (1997). https://doi.org/10.1006/jabr.1997.7144

J. Zhang, C. Zhang and Y. Cao On the structure of split involutive regular Hom-Lie algebras, Operator and Matrices, Vol. 11, 5783-792, (2017). https://doi.org/10.7153/oam-2017-11-55

Publiée
2022-12-26
Rubrique
Articles